Commodore® Amiga®
A500/A2000
Technical Reference
Manual

Converted by H.YILDIZ

A2000/AS500 Technical Reference Manual

Section 1

Section 2

Section 3
3.1
3.2
3.3
3.4

Section 4
4.1
4.2
4.3

Section 5

Section 6

Section 7
7.1
7.2
7.3
7.4

Appendix A.
A-1

A-Z
A-3
A-4
A-5

Table of Contents

Summary of Differences
System Block Diagrams
Amiga Expansion

Designing hardware for the Amiga Expansion Architecture

Driver Documentation
Software for Amiga Expansion
Amiga Expansion Connectors
100 Pin
86 Pin
Video Slot
PC Bridgeboard

Description of the PC/XT emulator for the Amiga 2000

BIOS entry points
Janus library
Amiga Hard Disk/SCSI Controller
Custom Chips
Fat Agnus Chip
8520 Chip
Miscellaneous Hardware Information
Clock/calendar registers
Power budgets
AZ000 PAL equations
B2000 Jumpers

Diagrams

Backplane Example

PIC Example

A500 Exterior (86-pin expansion connector)
Amiga 2000 Expansion Board Layout

Amiga 2000 Form Factor

Amiga 2000 Video Card

86-Pin Slot Expansion Board

AZ2000/B2000 Keyboard Connector Pinout
Amiga 500/2000 Mouse Diagram and Pinout

Schematics
AZ2000 Schematics
B2000 Schematics
AB00 Schematics

13

17
51
55

75
87
101

109
121
131
159

AZ000-1
B2000-1
A500-1

COPYRIGHT

This manual is copyright © 1986, 1987 by Commodore-Amiga, Inc. All Rights Reserved. This document
may not, in whole or part, be copied, photocopied, reproduced, translated or transferred to any
electronic medium or machine readable form without prior consent, in writing, from Commodore-
Amiga, Inc.

Amiga is a registered trademark of Commodore-Amiga, Inc.

Commodore and CBM are registered trademarks of Commodore Electronics Limited.

Hayes is a registered trademark of Hayes Microcomputer Products, Inc,

iBM s a registered trademark of International Business Machines Corporation.

Maclintosh is a trademark of Apple Computer, Inc.

DISCLAIMER

THE INFORMATION IS PROVIDED “AS 15" WITHOUT WARRANTY OF ANY KIND. EITHER EXPRESSED OR
IMPLIED. THE ENTIRE RISK AS TO THE ACCURACY OF THE INFORMATION HEREIN ISASSUMED BY
YOU. COMMODORE-AMIGA DOES NOT WARRANT, GUARANTEE. OR MAKE ANY REPRESENTATIONS
REGARDING THE USE OF, OR THE RESULTS OF THE USE OF, THE INFORMATION IN TERMS OF
CORRECTNESS, ACCURACY, RELIABILITY, CURRENTNESS. OR OTHERWISE. IN NO EVENT WILL
COMMODORE-AMIGA, INC. BE LIABLE FOR DIRECT. INDIRECT, INCIDENTAL OR CONSEQUENTIAL
DAMAGES RESULTING FROM ANY DEFECT iN THE INFORMATION EVEN IF IT HAS BEEN ADVISED OF
THE POSSIBILITY OF SUCH DAMAGES. SOME LAWS DO NOT ALLOW THE EXCLUSION OR LIMITATION OF
IMPLIED WARRANTIES OR LIABILITIES FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES, SO THE
ABOVE LIMITATION OR EXCLUSION MAY NOT APPLY.

Schematics represent current machine which is subject to change without notice.

Credits

The material for this manual was produced by Engineering, Documentation,
and Technical Support staff at Commodore West Chester, Commodore
Braunschweig, and Commodore-Amiga. Individuals contributing major por-
tions of information and input are Dave Haynie, Jeff Porter, Phil Lindsay.
Carolyn Scheppner. Lisa Siracusa, George Robbins, Andy Finkel, Eric Cotton,
Jeff Boyer, Steve Ahlbom, Steve Beats, Dieter Preiss, Bernd Assmann, and
Torsten Burgdorf.

This manual was compiled and edited by Steve Finkel.

Manual design by Jo-Ellen Temple and Wilson Harp.

Section 1

Summary of Differences

KICKSTART IN ROM

This manual presents technical documentation for three different
Amiga models, comparing them to the original Amiga, referred to as
model A1000. Technical information included in this manual is rel-
evant for the following Commodore Amiga models:

® the Amiga 500 (AS00), a low-cost version of the origi-
nal Amiga computer, software-compatible with the
A1000. Unlike the A1000, the A500 has an integrated
keyboard, provision for internal memory expansion up
to 1 megabyte, new-style hardware connectors, and
Kickstart code in ROM.

Two versions of the Amiga 2000:

® the A2000 is software-compatible with the A100C and
has internal slots, real time clock/calendar and new-
style hardware connectors.

¢ the B2000, the cost-reduced version of the Amiga
2000, features some different custom chips, but is
otherwise similar to the A2000.

The B2000 is still under development, and the information present-
ed in this document is subject to change. The information included on
the B2000 is intended to aid developers in designing software and
peripherals that are applicable for both the current and upcoming
version of the Amiga 2000.

Unless differences are specifically noted, information presented for
the A2000 also holds true for the B2000. The differences between
the two Amiga 2000 models are mainly hardware differences which
will affect peripheral design, but not the way the computers function
with software. Section 2 contains system block diagrams for all
three new Amiga models.

Both the Amiga 2000 and the Amiga 500 feature version 1.2 of
Kickstart built into ROM. Kickstart 1.2 (currently version 33.180)
boots automatically when the Amiga is turned on.

EXTRA KEYS ON THE
KEYBOARD

meric keypad, and include:

KEY

Left parentheses

Right parentheses

Slash
Asterisk
Plus

+ W e

Both the Amiga 2000 and 500 feature 94-key keyboards, as com-
pared to the A1000’s 89-key keyboard. (The European versions of
the keyboards have 96 keys.) The new keys are all located on the nu-

SCAN CODE
$5A
$5B
$5C
$5D
$5E

In PC mode on the Amiga 2000 (using a Bridgeboard), these keys
assume typical PC functions, including Number lock {left parenthe-
sis), Print screen (asterisk) and Scroll lock (right parenthesis).

On some keyboards, the left Amiga key has been replaced by the
Commaodore key. This key performs identically in either case.

RAW KEY CODES ON
THE KEYBOARD

45 50 51 52 33 54 55 56 37 58 35

Keyboard Layout Showing Raw Key Codes

00 01 o 03 4 as 06 o7 08 09 DA 0B

oD

41

5F

SA 5B 5C

5D

D 3E 3F

4h

2D 2E 2F

SE

2 33 34 a5 36 37 38 ¥ 3A

61

4aF

4D

4E

67

65

Figure 1.1 Key Codes

oF 3

43

Note: On the U.S. keyboard, the keys with codes 44 and 60 are
extended to include the European keys with codes 2B and 30,
respectively. Also note that England uses the U.S. rather than
the European keyboard, but not the U.5. keymap.

See Table 1-1 at the end of this section for a table of the raw key

codes.

EXTERNAL SYSTEM 1/0

RS232 and MIDI Port

e
\;flf((!t!fz
00000002242

This section describes each I/0 interface in detail, and some of the
tradeoffs made with respect to A1000 compatibility.

The Amiga 2000 and Amiga 500 have differences in the serial and
parallel ports from the Amiga 1000, the main difference being
changes in the sex of each port (changing the serial to female and the
parallel to male), which allows the new Amigas to use standard inter-
face cables.

The RS232 connector on the AS00 and A2000 is form fit and func-
tion identical to a Commodore PC-10/20 with a few exceptions. This
is the OPPOSITE sex connector from the A1000. The connector
is a shielded male DB25P connector. The A1000 supplies various
non-standard RS232 signals on the DB25 connector. These non-
standard signals were removed wherever possible. The RS232 con-
nector is NOT physically compatible with some MIDI interfaces but is
compatible with the Amiga Modem/1200 RS {model 1680). Below is
a comparison chart between the RS232 standard, a Hayes Smart-
modem standard, the A1000 R5232, and the new Amiga 500/2000

RS232 connector.

A500/
PIiN RS232 A1000 A2000 PC10 HAYES® DESCRIPTION
1 GND GND GND GND GND Frame ground
2 TxD TxD TxD TxD TxD Transmit Data
3 RxD RxD RxD RxD RxD Receive Data
4 RTS RTS RTS RTS — Request to send
5 CTS CTS CTS CTS CTS Clear to send
6 DSR DSR DSR DSR DSR Data set ready
7 GND GND GND GND GND Signal ground
8 DCD DCD DCD DCD DCD Carrier detect
9 — — +12v +12v — + 12 volt power
10 — — —-12v —12v — - 12 volt power
11 — — AUDO — — Audio output
12 S.SD — — — S| ~ Speed Indicate
13 S.CTS — — — —
14 STxD —Bvde — — — ~5 volt power
15 TxC AUDO — — — Audio output
16 S.RxD AUDI — — — ~ Audio input
17 RxC EB — — — Port clock 716KHz
18 . INTZ2* AUDI — — Interrupt line/Audio input
19 S.RTS — — — —
20 DTR DTR DTR DTR DTR Data terminal ready
21 SQD +5vdc — —_ — + 5 volt power
22 RI — RI RI RI Ring indicator
23 S5 +12Vdc — S — — + 12 volt power
24 TxC1 ce* — — — 3.58MHz clock
25 — RESB*

— — — Buffered system reset

As you will notice, the AB00 and 2000 deletes clocks and interrupt
lines from the A1000. The +/-—5Vdc and reset lines are also de-
leted. The +/— 12Vdc lines are identical to a PC10/20.

The following signals (formerly on the RS232 connector) can be found
on other connectors:

ResB = parallel connector
C2 = video connector

Centronics Port The Centronics port also has some non-standard signals. Below is a
table comparing the A1000 Centronics port with the AS00/A2000

Centronics port. Again, this is the opposite sex from the A1000
and the same sex connector as an IBM®-PC (i.e., a female DB25

connector).
PIN A1000 AS00/A2000 PC10
1 DRDY* STROBE* STROBE*
2 Data O Data O Data O
3 Data 1 Data 1 Data 1
4 Data 2 Data 2 Data 2
c e s s ens s rerss 5 Data 3 Data 3 Data 3
x;;.‘..’-‘.;;-‘.;.‘/ 6 Data 4 Data 4 Data 4
7 Data 5 Data 5 Data 5
8 Data 6 Data 6 Data 6
9 Data 7 Data 7 Data 7
10 ACK* ACK* ACK*
11 BUSY(data) BUSY BUSY
12 POUT(clk) POUT POUT
13 SEL SEL SEL
14 GND + 5v pullup AUTOFDXT*
15 GND NC ERROR*
16 GND RESET* INIT*
17 GND GND SLCT IN*
18-22 GND GND GND
23 +5v GND GND
24 NC GND GND
25 Reset* GND ' GND
Video Output The ASC0 and A2000, like the A1000, use a DB23 video connector.

This 23 pin connector contains all the signals necessary to work with
a Genlock, but the current Genlock will need to be redesigned in or-
der to meet the physical requirements of the ASOO and A2000, in-

Mouse and Joystick
Ports

A500 Expansion Port

AS500 RAM Expansion

A500 Power Supply
Connector

stead of the A1000. An AS00 genlock will also have to supply its
own power. Power will not be provided for the Genlock. All signals
on the 23 pin connector are the same except for the power.

In addition to the 23 pin video connector, the AS00/B2000 provides
a monochrome composite video output, unlike the A1000. This pro-
vides the capability of using a low-cost, high persistence mono-
chrome monitor with the AS00 for viewing 640 X 400 interlaced
video without as much flickering.

Power is provided for the A520 modulator and composite video
adapter. :

The mouse and joystick ports of the AS00 and A2000 are identical
to the A1000, except that the current limiting protection circuitry
has been eliminated. The AS00 and A2000 use a different mouse
than the one the A1000 uses. A diagram and information on this
mouse is included in Appendix A of this manual.

The expansion port is electrically compatible with the A1000, but be-
cause of its physical location, it cannot accept any A1000 expansion
peripherals without some further adapter. Power is supplied to this
connector, but only enough for a ROM cartridge. The exact pinout of
this 86 pin edge connector appears later in this document, in the sec-
tion of Amiga expansion. The A500 diagram in Appendix A shows the
new positioning of this port (relative to A1000) and the pin num-
bers.

Associated with the built-in 512KB of RAM is a header socket to al-
low an additional 512KB of RAM and a battery backed-up real time
clock board to be added. This small PCB {the A501 RAM Expansion
Cartridge) can easily be installed by the user. The clock in this unit
functions the same as that built into the A2000, which is reviewed in
Section 7-1.

The AS00 power supply connector is similar to that of the C128. The

pinout of the square 5 pin DIN connector is as follows:

PIN SIGNAL

+5Vdc @ 4.3A
Shield Ground
+12Vdc @ 1.0A
Signal Ground
—12vdc @ .1A

U ARWN—

External Disk Interface
Connector

The 23 pin D-type connector with sockets (DB23S) at the rear of the
Amiga is nominally used to interface to MFM devices.

The second disk drive port is similar to the A1000, and is therefore
compatible with the 1010 or the 1020 disk drive. The CPU will pow-

er one external 1010 disk drive.

External Disk Connector Pin Assignment

Pin
1

o~

10

11

12

13

14

Name Dir
RDY* 110
DKRD* |
GND

GND

GND

GND

GND

MTRXD* oC
SELZB*/SEL3B* OC
DRESB* ocC
CHNG* /0
+5V

SIDEB* 0

WPRO* I/0

6

Notes

H motor on, indicates disk
installed and up to speed.

If motor not on, Identification
mode. See below.

MFM input data to Amiga.

Motor on data, clocked into
drive’s motor on flip flops by
the active transistion of
SELxB*.

Guaranteed setup time is 1.4
JLSEC.

Guaranteed hold time is 1.4
p.sec.

AS500:Select drive 2/A2000:
Select drive 3.

Amiga system reset. Drives
should reset their motor on
flip flops and set their write
protect flip flops.

Note: Nominally used as an
open collector input. Drive’s
change flop is set at power-up
or when no disk is installed.
Flop is reset when drive is
selected and the head stepped,
but only if a disk is instalted.
270 ma maximum; 410 ma
surge.

When below 3.75V, drives are
required to reset their motor
on flops, and set their write
protect on flops.

Side 1 if active, side O if
inactive.

Asserted by selected, write
protected disk.

15 TKO* /0 Asserted by selected drive
when read/write head is
positioned over track O.

16 DKWEB* OC Write gate (enable) to drive.

17 DKWDB* 0oC MFM output data from
Amiga.

18 STEPB* oC Selected drive steps one

cylinder in the direction
indicated by DIRB.

19 DIRB - 0C Direction to step the head.
Inactive to step towards
center of disk (higher
numbered tracks).

20 SEL3B*/ oC AB0O0: Select drive 3/A2000:

Not Used Not used.

21 SEL1B/SEL2B OC ABQO: Select drive 1/A2000:
Select drive 2.

22 INDEX* 110 Index is pulse generated once

per disk revolution, between
the end and beginning of
cylinders. The 8520 can be
programmed to conditionally
generate a level & interrupt to
the 68000 whenever the
INDEX* input goes active.

23 +12V ' 160 ma maximum; 540 ma
surge.

Note: * in signal name denotes active low signal.

External Disk Connector Identification Mode

An identification mode is provided for reading a 32 bit serial identifi-
cation data stream from an external device. To initialize this mode,
the motor must be turned on then off. See pin 8, MTRXD* for a
discussion of how to turn the motor on and off. The transition from
motor on to motor off reinitializes the serial shift register.

After initialization, the SELxB* signal should be left in the inactive
state,

Now enter a loop where SELxB* is driven active, read serial input
data on RDY* (pin 1), and drive SELXB* inactive. Repeat this loop a
total of 32 times to read in 32 bits of data. The most significant bit is
received first.

Full Bus Termination

Internal RAM Expansion
on the AS00

EIA Ring Indicate
Support

External Disk Connector Defined Identifications

$0000 0000 — no drive present
SFFFF FFFF — Amiga standard 3.25 diskette
$5555 5555 — 48 TPI double density double sided

As with other peripheral ID’s, users should con-
tact Commodore Technical Support for 1D Assign-
ment.

The serial input data is active low and must there-
fore be inverted to be consistent with the above
table.

External Disk Connector Limitations

1. The total cable length including daisy chaining
must not exceed 1 meter.

2. A maximum of 3 external devices may reside
on this interface (2 for the A2000).

3. Each device must provide a 1000 Ohm pullup
resistor on every open collector input.

Unlike the A1000 and the AS00, both versions of the Amiga 2000
have an internal expansion bus, as a function of having an internal
card cage. :

On the AS00, memory at $CO0000 is “slow” RAM (the processor is
locked out by the custom chips) rather than fast RAM as suggested
by A1000 external expansion. Thus, when ExecBase is transferred to
SCO0000 to free up chip RAM, there is no speed advantage. Howev-
er. you would still be making real chip RAM available for other pur-
poses. The B200O0 functions as the AS00 does in this regard.

The AS00, A2000 and B2000 support the RS232 Rl lead to allow
operation with modem standards. When the RI signal is asserted, the
parallel port SEL line will be driven low. If this function is not de-
sired, the Rl lead should be disconnected in the modem cable.

Time of Day Clock

Light Pen

Monochrome

Composite Video

Audio Filter Cut-out

AS00 Reset

A2000 Expansion Bus
IPL Lines

In the AS00, the Time of Day clock is tied to the VSYNC signai rather
than the power line. This results in the theoretical error of several
minutes a day. For more precise timing, use the optional real-time
clock.

In genlock mode, the genlock peripheral provides a 30 Hz V/Z signal,
which results in the clock running half speed.

The light pen input on the A500 and B200Q has been moved to the
second mouse port to allow use without a pass-thru mouse adapter.
On a B20Q0, the light pen can be jumpered to port O.

The A500 and B2000 provide a full-bandwidth 16-level grey-scale
composite video output. Color compoasite is available with an optional
AB20 composite color/rf video adapter.

The A500 and B2000 can cut out the anti-aliasing filter by prograrm-
matically turning off the “power on” LED. External bandwidth limit-
ing to below 15 KHz will be required for most applications. This per-
mits wider frequency response by using faster sampling rates.

The AS00 implements a “hard-wired” Control/Commodore/Amiga
key reset rather than the “soft” A1000/A2000 keyboard reset.
“Shut down™ keyboard messages are not transmitted.

The A2000 does not run the processor IPL tines beyond the 86 pin
MMU connector. [nstead, additional interrupt request lines are allo-
cated for future expansion devices. These lines are not supported by
the current software.

Raw
Key
Number

00
01
02
03
04
05
06
07
08
09
0A
0B
oC
oD
OE
OF

10
11
12
13
14

T OoOwWNOURWN —

Table 1-1

Keycap
Legend

I —~— %o , BQ.u}:ﬂ:@-—-?

—+

—C<-SHIDIMmMEzO o A

e 1
w—u-h-uo

o xX-TOaomounrx W

10

RAW KEY CODES

Unshifted Shifted
Default Default

Value Value

" (Accent grave) ~ (tilde)

1 !

2 @

3 #

4 $

5 %

6 -

7 &

8 *

9 (

0)

- (Hyphen) — (Underscore}
= T4

N |

(undefined)

0 0 (Numeric pad)
q 0 Q

w W

e E

r R

t T

y Y

u U

i [

0 0

p P

[{

] }

(undefined)

1 1 {Numeric pad)
2 2 (Numeric pad)
3 3 (Numeric pad)
a A

s S

d D

f F

g G

h H
] J

k K

l L

' (single quote} ”

Raw
Key
Number

2B
2C
2D
2E
2F

30
31
32
33
34
35
36
37
38
39
3A
3B
3C
3D
3E
3F

40
41
42
43
44
45
46
47
48
49
A7
4B
4C
4D
4E
4F

Unshifted

Keycap Default

Legend Value
(RESERVED)
(undefined)

4 4

5 5

6 6
(RESERVED)

Z z ‘

X X

C c

v v

B b

N n

M m

, < , (comma)

> . (period)

/? /
(undefined)

7 7

8 8

9 9

{Space bar) 20

BACK SPACE 08

TAB 09

ENTER oD

RETURN 0D

ESC 1B

DEL 7F

' (undefined)

(undefined)
{undefined)
(undefined)

Up Arrow <CSI>A

Down Arrow <CSI>B

Forward Arrow <CSI>C
Backward Arrow <CSI>D

Shifted
Default
Value

(RESERVED)

4 (Numeric pad)
5 {Numeric pad)
6 (Numeric pad)

(RESERVED)

Z
X
C
v
B
N
M
<
>
?

. (Numeric pad)
7 (Numeric pad)
8 (Numeric pad)
9 {Numeric pad)

20
08
09
0D {Numeric pad)
oD

1B
7F

- (Numeric Pad)

<CSI=T
<CS]=>5
<CSl> A
<CSI> @

Un shifted Forward Arrow and Backward Arrow. note blank space after <CSI>.
<CSI=> stands for Command Sequence [nitiator.

11

Raw Unshifted Shifted

Key Keycap Default Default
Number Legend = . Value Value

50 F1 <CSl>0~ <CS[>10~
51 F2 <C5l>1~ <CS[=>11~
52 F3 <(Sl=2~ <CSI=12~
53 F4 <CSI>3~ <CS[>13~
54 F5 <CSl=>4~ <CSl=>14~
55 F6 <CSl>5~ <(CS]>15~
56 F7 <CSI>6~ <(CSI>16~
57 F8 <CSI=>7~ <CS1=>17~
58 Fg <CS1=>8~ <CSl>18~
59 F10 <CSI>9~ <CSl=>19~
SA (((

5B)))

5C / / /

SD * * *

5E + + +

5F HELP <CS|>7?~ <CS[>7?~

12

o~

Section 2

System Block Diagrams

INTRODUCTION

This section features system block diagrams for each new Amiga, the
A2000, B2000 and AS50Q, in that order.

13

0 { [oA { { «t . . f { { {
0002 VOIWY EZi109]
LI B = MZTS ST S 434404 iafipnt ———
HYd — dIHD e XA S HOd v v v 353Q0ay w wy
ss3dqqn | Y ¥ @ w
LUULS felmmm &
WY ; a 00089 o Y
T z =
ard % | ADTA w o
=4
z d¥2Lang >
A344nd o, e ooy T Tat-e
AT TIOALNOD -y 2 IHal 2 T041HO) M|
D2 THISHD Sr3a0ae e .
—_—] g
- SE3aTan M.__ um_
vl a
nd> 8 ¢
2
RKER|
HITIOALNDD |eg w—
: 434ang
yua Lid at €53 :@8>a1 ar wing |Q PPN S B PR it b
a a a - ay av
- i
SNNDY 1) ICHSYTT]
: ®
aly Yl dly 51 Q 0 “
2 FALAINNDD -0 b HLIM MO0 5 L
. ADVAMLINT 014Ny DIFALS Laod 1a0d Mv Iy
JOUIEILNT ADILS - AOr INIL BT AR M
HOVJHALNT ASH0H AdAOTd TITIVEYd - :
HATTOALNOD 03dIn AOVAUALN] TVIAES L
i o
IS I NZ3QJ v 1 nvd q
< Pt :
W -
g8 3
1 | e
x ol od
Q Q
= =
N S
a
a
F Y Y ¥ Y g
51 - 0IaIn ADLLS-ADC ASNOM D1GMW ZEZ SH TRUR XD RIAOT WAINIAd L]

JO3DIN0D ~ YI[HY uld @t

l Jojoauun) — 34 uwid 29 l ['uuog urd gg] [

14

RS 232

CONTROL FLOPPY -
m — KEYBOARD N RS 232 E.ﬂ, COMPOSITE/MONOCHROME
t FRINTER FLOPPY CONTROL DATA AUDIO POTS VIDEO - RGB MOUSE
!] b ! f D
1B
£ £ o L
Sl |2 =
a . Video ’ n,u)
= X Hybrid 5 | Video 1
H = =]
[£ >
ik d
PAULA DENISE 36
L SERIAL INTERFACE VIDEQO CONTROLLER PIN
) [] , . T MOUSE INTERFACE)
B PARALIEL FLOPIY 1Oy - STICK INTERFACE Video
£ 5 BATTERY - R STERED AUDIO INTERFACE
M2 COCK PuR PORT WITH 4 IvA CONVERTER ﬁl
A H
< < 1 1) I 1A i 1A 1)
. FAT
ol] AGNUS
Al Al AT " i o
] I3 DATA W 1D BIT DMA
BUFFER - CONTROLLER
HUFFER ID<0:15:
2 % : cpPL BLITTER
! Z g GRAPHIC
= acte | s | coNron [o=l ¢ CONTROLLER
Z ez -—n_ .
Z Z RUFI LR =
- Z -
£ B = D RA
= = = KICK
= = x
- D) 13
68 i START DRAM
A
AA AA ADDRESS A A N ROM CHIP - RAM
e — ~— - 512K * B BIT
BUFEER
o - DRAM
BUFFER
CONIROL NONCHIP - RAM
i 512K * 8 BT
A=T123%
BUS CONTROL
& BUSTER
ARBITRATLON 2000

15

ndo
00089

{ | (({ ({ ({ { {
|euondo giN L
"PIS MZIS
Wvya
ol 2
2
(721 7
2| gla
(1)
(91) sng ereq sng eleq
2F uole" SlEIS L _\/_
) = | &5 uoiRang 19
1sanbay ¥iNg 2lig mou
S |
(L=}
A Sng SSaIPPY
=
vInvd 3siNag e
. SNNDY) IO S¥20|D
vd i |03uoD) AHYD MOVIQ
) M ~ M
Sy 5V
_ ﬁ 4 : #0012
2yW 82
{8) ssaippy Jeisiboy — yoy
QIYSAH O3TIA 16ued ZE2SH - AI_ T
jonuon ysig 4 (2) SAIHD 0258 (saika wa o dn) INLL
| vod om 14Od NOISNVAX3 vau sng
| | 00089 |in<
T »r C O < g D= Sz » H H
%8 2 g 54 RF @3
M S 3 88 8 S8 QUYOdA3N
5

16

Section 3.1

Designing Hardware for the Amiga Expansion

Architecture

INTRODUCTION

This section gives guidelines for designing hardware to reside on the
Amiga expansion bus. The Amiga expansion bus is a relatively
straightforward extension of the 68000 bus.

Hardware for the bus can be viewed as two categories: backplanes
and PICs. Backplanes interface to the 86 pin connector of either
another backplane or the Amiga itself. Backplanes buffer the bus and
provide 100 pin connectors for PICs to plug into.

PIC is an acronym for plug-in card. A PIC is usually a card that plugs
into the standard 100 pin Amiga connectors.

A sub-type of PIC is a combination of backplane and PIC integrated
into one package. These combination products should follow ail of
the applicable backplane and PIC rules, especially auto-configuration.

Software never sees backplanes; all expansion hardware appears to
the software as PICs.

WARNING

These specifications represent “worst case” design targets.
Products that do not comply with these specifications can be ex-
pected to fail on worst case production units.

Following conservative design practices and allowing the widest
safety margins is your best assurance against problems in the
field.

17

>O0—Z e

EXPANSION

As shown in Figure 3.1, “"Expansion Architecture Overview,” the ex-

ARCHITECTURE pansion bus is implemented as backplane (an expansion box) which
OVERVIEW accept PICs (boards). The recommended number of PICs to a back-
plane is five.
Due to timing considerations, it is not possible to daisy-chain more
than two buffered backplanes without inserting wait states.
NOTE
You should also take extreme care in controlling signal
radiation from your product, in order to pass FCC class 8
regulations.
DOWNSTREAM BACKPLANE UPSTREAM BACKPLANE
PIC PIC PIC _ PIC PIC PIC
5
I.
AO
B VW
U EN
i -
F A A A A i i H 4 1 13
E
o A |
=l DATA < X
- < A] ADDRESS
¥ F ¥ ¥))
COLLISION g = ~SLAVE® - = {— ===] COLLISION
BUS STEERING and ENABLE - DMA*___ 1] BUS STEERING and ENABLE
BUS ARBITRATION BUS ARBITRATION

Figure 3.1. Expansion Architecture Overview

18

GLOSSARY

Active Active high signals are considered active when they are in

the “one state™ or “high state”. Active low signals are considered ac-
tive when they are “low” or in the “zero state”. Active high signals
do not have barred signal names. Active low signals do have barred
signal names. Active means that the signal is

1. is true (non-barred) and is currently in the one state, or
2. is a barred signal name and is currently in the zero state.

An example is AS* (the * =bar). AS# is active when it is equal to zero.
A counter example is the signal AS (the inverse of AS+), which is
active when it is in the one state.

Auto Configuration The protocol (specified in this section) that
Amiga uses to configure expansion cards into the system.

Downstream Downstream means closer to the Amiga. For in-
stance, if two backplanes are daisy chained on the bus, the closer-in
backplane is downstream from the further-out backpiane. The con-
cepts of upstream and downstream are important in determining
which direction the address and data drivers should drive.

Master A PIC which is capable of initiating DMA cycles on the bus.

PIC A PIC is a plug-in card or a product which behaves in the sys-
tem as a plug-in card. That is. it provides a resource that resides on
the expansion bus, and follows the rules for auto-config, master pro-
tocol, slave protocol, etc. _

Slave A slave is a PIC that can only respond to bus cycles. A slave
cannot initiate bus cycles: in other words, it does not drive the ad-
dress lines on the backplane, nor AS*, UDS*, LDS+*.

Upstream Upstream means further away from the processor. For
instance, all PICs are upstream from the buffers on the backplane
that they are plugged into because the buffers are between the PIC
and the Amiga. -

19

DESIGN GUIDELINES
FOR BACKPLANES

Collision Detection
Circuit

Bus Arbitration Logic

In this context, collisions are defined as any instance of two slaves at-
tempting to respond to the same bus cycle.

All backplanes must have a collision detect circuit. The reason is that
the PICs are auto-configurable and can be accidently instructed by
software to respond to overlapping address spaces. Without collision
detection, erroneous software can damage the hardware by causing
bus contention.

Coltision detect works in the following way: As soon as a PIC knows
that it has been selected as the slave for this bus cycle, it asserts
SLAVE+ low and holds SLAVE* low until the end of the bus cycle
(AS* going high).

The collision detect circuit (usually part of a PAL) detects whether
more than one slave is responding and, if 50, asserts BERR=. All data
drivers on the expansion bus must be designed to enter high imped-
ance mode whenever BERR=* is active. Because data drivers are not
turned on until S4 (ASDELAYED+ active), BERR* will have disabled
the drivers before the contention can begin.

Note that in order to detect all cases of multiple stave response, the
circuit must watch A23-A19 for Amiga address spaces and also
watch SLAVEIN* from the next box out. See discussion of the ex-
ample schematic for specific PAL equations that implement collision
detect.

Because BERRx is listened to by all PICs, it will in some systems be
heavily loaded, so it should be driven with a hefty open collector or
tri-state driver. Each backplane should provide a 1000-ohm pull-up
resistor on BERRx,

The bus arbitration logic is based on the 68000 BR=, BG*, BGACK*
protocol as described in the 68000 manual. In order to avoid meta-
stabie states in the backplane latches, all changes in state of the BR#
lines from the PICs must be clocked by the rising edge of 7M,

The example design gives our current recommended bus arbitration
logic. Refer to the ARBITRATE PAL equation in Table 3-3.

20

Buffer Control Logic

Data Driver Timing

Clock Buffers, 7M, and
ASDELAYED*

THE PROTOCOLS

Read or Write Cycle
With Amiga as Master

The buffer control logic controls output enable and direction of the
bidirectional tri-state bus drivers. See the STEERING PAL equation,
Table 3-2. -

It should be noted that the backplane drivers must not turn on until
the rise of $4 during a read. This is okay because data from the
Amiga internal RAMSs is not valid during S4 anyway. 50 nothing is to
be gained by turning the data buffers on earlier.

There are three clocks coming from the Amiga. These are CDAC,
C1*, and C3*. The backplane must generate 7M (equivalent to the
Processor clock) by the following equation: 7M = C1* XNOR C3+.

The bus protocols are basically the same as standard 68000 proto-
cols: however, the timing margins are tighter due to the potentially
long paths of Amiga and PICs talking to each other across two buf-
fered backplanes.

One unusual feature is that when you are doing a DMA transfer into
or out of the Amiga display RAM (the half megabyte starting at
address 000000), the DTACK= circuit will synch the master up with
C1. Because C1 is twice as slow as 7M, there are two possible phase
relationships between C1 and the beginning of the DMA bus cycle. If
AS is asserted during the last quartile of C1 (C1 low and C3 low, see
Fig. 3.2, System clock timing diagram), we call this an “in sync™ bus
cycle, and DTACK» is given in time to do a normal 4-clock {7M) bus
cycle. (Note: Occasionally, DTACK= is delayed due to contention with
the graphics chips, but that does not matter in this discussion.)

However, DTACK works differently if the DMA controller asserts
AS+ in the other phase. In the second quartile {C1 high and C3 high),
the DTACK= circuit holds off DTACK* long enough to insert one wait
state, thus synching up the “out of sync™ bus cycle.

Since the Amiga bus master is a 68000, the bus cycle is a 68000
cycle. However, the responding stave does not pull DTACK+. Our in-
ternal circuitry pulls DTACK* unless the slave pulls XRDY low.

Also, the slave (PIC) must pull its SLAVE+ output low as soon as it is
selected, and at the end of the cycle, disassert SLAVE* when AS#*
goes away.

21

Read or Write Cycle
with a PIC as Master

Bus Arbitration

SYSTEM LEVEL
ORGANIZATION (AND
IDIOSYNCRASIES)

Address Override (OVR*)

INTERRUPTS

A PIC as master must drive the bus using the same protocol as the
68000. Some of the timing margins must be better than those from
the 68000, because the PIC is driving through several levels of buff-
ers, and the Amiga logic is designed to the 68000 (8 megahertz
part) specs. Specific timing requirements can be found in the tables
later in this section.

The bus arbitration scheme is based on the 68000 BR*,BG* BGACK*
protocol. PICs are required to assert BR* clocked by the rising edge
of 7M. This makes it less expensive to design bus arbitration logic
that will be reliable. Specifically, synchranous arbitration logic can be
clocked on 7M without danger of going metastable.

Pin 17 OVR* can only be used in between address $200000 and
AQ0OD, and implies you have to supply your own DTACK*, OVR= is
not supported for the purpose of disabling system decoding in the
CO0000 to DFFFFF range. Worst case 68000 timing requires modi-
fications to the system decode gate array to accomplish this reliably.
Other uses of OVR* are not supported.

USE INTZ+ OR INT6* (DON'T There are two interrupt input lines on the

. Amiga: INTZ+» and INTG+*. INT2* = pin
PULL IPLO=-IPLZ~) 19, INT6e = pin 22. these lines assert

levels 2 and 6 to the processor.
Do not assert the [PLO+ thru [PL2+ lines,

because they are already driven by
internal logic,

22

-

VPA Is Not
Recommended

Do Not Use Pins Marked
EXP

TIMING GENERAL
DISCUSSION

Interrupt latency on the Arniga is highly
application software dependent, this is
because the Blitter can be operated in
“nasty mode” at the software’s option.
If the blitter is “nasty” and is given a lot
of work to do, the processor receives
very few memory cycles. sc the
interrupt latency will suffer.

INTERRUPT LATENCY—
BLITTER, MASKED INTS

The software can also mask out
interrupts using on-board interrupt
control logic.

We recommend that you design your peripherals to run asynchro-
nously on the 68000 bus, that is, a slow peripheral should be mem-
ory mapped and use puliing XRDY low as a means of making the
68000 run a slower cycle. The use of XRDY to delay DTACK is dis-
cussed elsewhere in this document.

We do not recommend using VPA. If you decide to use VPA, you
must pull OVR* low 30ns before asserting VPA=* low. Pulling OVR*
low will tri-state VPA* in the current design PAL, thus allowing your
logic to drive VPA*. Pulling OVR* will also prevent DTACK* from
being asserted by the PAL. However, this will not disable the on-
board 8520 CIA chips.

If your slave uses the VPA VMA protocol to be synchronous with the
68000's E clock, you must only use addresses in which A12 and A13
are high. This is because we have synchronous ports on board which
are activated by (A12+ AND VMA), also (A13+ AND VMA).

Do not drive or load pins marked EXP or RESERVE.

Timing specifications are listed in Table 3-1.

There are two main problems to be dealt with in the expansion archi-
tecture timing: propagation delays and skews in the clock, address,
data, and control paths. The timing is tight: thus, we recormmend us-
ing FAST and AS parts to buffer these lines. To guarantee meeting
the timing requirements, you must be careful to not exceed the rec-
ommended operating conditions of the parts you chose, for example
the capacitive loading. In calculating your loading. note that all PICs
are specified to present no more than two “F” loads plus minimal
trace capacitance to each connector pin. Backplanes are specified to
present no more than one “F" load plus trace capacitance to the
Amiga. Do not use “typical” numbers; reliable systems can be built by
using “worst case” numbers.

23

Expansion Notes

1)

The loading, buffering and layout requirements specified for the
A1000/A500 expansion connector must be strictly followed for

reliable operation. Unbuffered devices and bus line extension are
known problem areas.

Unbuffered daisy-chaining of multiple external expansion devices
is not supported.

The A500 provides only nominal amounts of power for expan-
sion devices. All devices having significant power requirements
are expected to be self-powered and shouid not make connec-
tions to the power pins on the expansion connector.

DESIGN GUIDELINES
FOR PICs

Auto Configuration

General Description of
Auto Configuration

All PICs implement the auto-configuration protocol. The auto config
protocol is designed so that system auto-config software can inter-
rogate the PICs ID locations, build a system table of the installed
PICs, and place the PICs in the 68000 memory space.

If it is difficult to imagine how to implement this protocol while it's
being described, don't worry. The design requires one PAL, one latch,
and one address match circuit. Complete details are given in the
example design.

Upon reset, all PICs come up in the unconfigured state. In the uncon-
figured state, the PIC responds to the 64 kilobyte address space
starting at location EBOOOQO, if CONFIGIN= is active to the PIC. If
CONFIGIN=* is not active, the PIC does not respond to any bus cycles.

The processor comes out and reads nibbles of ID data on D15-D12
from the PIC. The table of 1D data and the locations of control
latches is detailed later in this section. This data includes such things
as size of address space required, manufacturer’s product number,
and whether to add the PIC to the free memory pool (if it is a
memory PIC.)

Under normal conditions, the processor determines how much ad-
dress space the PIC requires and then loads the PIC's address latch
with an appropriate base address. This permanently relocates the
PIC at its new address (until Reset), and passes CONFIGOUT=* out to
the next PIC’s CONFIGIN*, whereupon the process is enacted again
until all PICs are configured.

The smallest unit of memory that a PIC can ask for is 64 kilobytes.
The largest is eight megabytes. All PICs should be designed to be
based on boundaries that match their space requirements; for exam-
ple, one megabyte PICs should be designed to reside on one mega-
byte boundaries {match circuit matches A23-AZ20). There are two ex-
ceptions to this rule, however. Four megabyte PICs must be capable
of being placed on four megabyte boundaries, as well as at hex
200000 and at hex 600000. Eight megabyte PICs should be capable
of being placed on eight meg boundaries and at hex 200000. This

25

requirement is because the eight megabyte space reserved for ex-
pansion in the current machine begins at hex 200000 (See auto-con-

fig notes below).

Auto-Config Notes

1) There is currently no provision for 6MB PICs. Designers of 8 MB
memory boards should consider auto-configs as two PICs to al-

low partial loading flexibility.

2) PIC size/alignment rules are subject to change. If so. bit(s) will be
defined to allow a PIC to specify that it is more flexible than the
old rules require.

3) The address map is subject to change. A PIC should assume that
it may be placed anywhere in the address space.

4) All expansion devices are strongly encouraged to use the auto-
config protocols. Assignment of fixed [/O addresses is subject to
negotiation.

Address Specification Table
All nibbles except 00, 02, 40 and 42 should be inverted.
Descriptions:

(00/02) 76 54 32 10 Board type and size
L_J

Memory size

000 = 8 megabytes
001 = 64 kilobytes
010 = 128 kilobytes
011 = 256 kilobytes
100 = 512 kilobytes
101 = 1 megabyte
110 = 2 megabytes
111 = 4 megabytes

Chained conflg request, indicates that the next
auto-config device in the daisy chain is physically
tied to this device.

Optional ROM vector valid

Link into memory free list

Board type

00 = Reserved
01 = Reserved
10 = Reserved

11 = Current style board

26

(04/06)

(O8/0A)

(OC/OE)

(10/12)
(14/16)

(18/1A
(1C/E
(20722
(24/26

Pinair a2 M-

(28/24)
(2C/2E)

(30/32)

(34/36)
(38/3A)
(3C/3E)

Product number, this number is defined by the
manufacturer of the board and is used by auto-
config software to initialize drivers for the
board.

Reserved, must be as specified

Bits are currently zero

O means this board can be shut up

1 means this board cannot be shut up
0 means any space okay

7 6 54 3210
7 6 54 32 10

I l

{

76 54 3210
7 6 54 3210
7 6 54 32 10
76 54 3210
7 6 54 32 10
765 4 3210
7 6 54 3210
7 6 54 3 210
7 654 3210
7 6 54 32120
7 6 54 3210
7654 3210
76 54 3210

27

1 means preference to be put in the 8 Meg
space

Reserved, must be O

Mfg # high byte

Mfg # low byte; These 2 bytes are assigned Dy
CBM. They are used by the auto-config software
to initialize drivers for boards.

Optional serial number, byte O {msb)
Optional serial number, byte 1
Optional serial number, byte 2
Optional serial number, byte 3 (Isb)

Optional ROM vector high byte

Optional ROM vector low byte. If the 'ROM addr
valid’ bit {4 of nibble O} is set, then these 2
bytes are the offset from the board's base ad-
dress at which the start of the ROM code infor-
mation is located (e.g., the hard disk driver). If
the bit it not set, then these 2 bytes have no
meaning.

Reserved, read must be O; write resets base
address register

Reserved, must be O

Reserved, must be O

Reserved, must be O

(40/42)

(44/48)

(48/4A)

(4C/4E)

(74/76)
(78/7A)
(7C/7E)

765 4 3210 Optional control status register
Write Read
Interrupt enable Interrupt enable
User definable don't care
Local reset must be O
User definable don't care
User definable INTZ pending
User definable [NTE pending
User definable INT7 pending
User definable lam pulling INT
765 4 3 210 Reserved
Write : Read
Not defined must be 00
765 4 3210 Base address register, write only

X X X X X X X X

[N [P IS N N (RN I (NG N N
OO DADDDN
IV UG WU Ul
F N NN N N N N NN N N

These bits are compared with AZ23 through A16

WWwWwwwwwwwwww

MMNoMNMNNNNMNDMNNDNDTDY

{or fewer) to determine the base address of this
board.

Optional “shut up” address, a write to this ad-
dress will cause the board to pass its config out
and then never again respend to any address.
RESET will re-enable the board. The actual ad-
dress that has this effect is 4C. Awrite to 4E is
ignored. This is write only.

Reserved, must be 00
Reserved, must be 00
Reserved, must be 00
Reserved, must be 00
Reserved, must be 00
- Reserved, must be 00
Reserved, must be 00
Reserved, must be 00
Reserved, must be 00
Reserved, must be 00
Reserved, must be 00
Reserved, must be 00

ek ek e))t)) e b b i
OO0OOCO0OO0OO0O0COOoO OO

Note: The actual reserved values will be FF rather than 00, because the system will invert them. See
the section on reading /0 locations for more information.

28

EXAMPLE BACKPLANE
DESIGN

Backplane Schematic
Overview

The Bus Buffers and
Their Control Logic

The Address and
Control Buffers

Generating DMAQUT

We have designed a backplane as an example implementation of our
expansion architecture. This section is a detailed description of the
schematic of that backplane. The schematic appears as Figure A-1 in
Appendix A.

While reading this section, refer to the backpiane schematics for the
AZ000 and PALS to see what is being described. The B2000O uses a
gate array to handle steering; however, this example backplane de-
sign is functicnally equivalent, and should be useful in that sense.

The bus comes in an the left from the processor via J10. Note that
both the data bus and address bus are buffered through bi-direction-
al buffers. The buffers are bi-directional in order to allow external
DMA controllers.

This subsection describes the bus buffers, their timing and control
logic. In this discussion, “upstream™ means away from the processor,
and "downstream’ means toward the processor. For instance. if you
daisy chain two devices on the bus, the further away of the two is
“upstream’” from the closer (downstream) device.

Throughout this document, there are references to signals going ac-
tive. Active is defined in the glossary for this section.

The address lines, function codes, UDS#, LDS*, R/W, and AS* are all
buffered in the same manner by 74F2485s. Their buffer direction is
determined by DMAQUT. They are enabled by ADDR_OE* (address
output enable bar). '

This section explains the PAL equation for DMAQUT found in the
STEERING PAL equations. {Table 3-2, later in this section).

DMAQUT active means that the current bus master is upstream of
the buffers. Since the buffers are at the extreme downstream end of
this backplane, the master is either on this backplane or upstream
from this backplane. Thus when DMAOUT is high, the drivers drive
the address and control lines downstream (toward the Amiga).

The PAL equation for DMAQUT is very straightforward:

DMAQUT = DMAIN + OWN

29

Generating ADDR OE*

The Data Buffers

Generating DBOE*

DMAIN is active when the bus master is upstream from this back-
plane. So when DMAIN is active, DMAQUT must go active.

OWN= is the wire OR'ed signal which means that this backplane has
the current bus master. Thus, because all PICs on this backplane are
upstream from the address (and data) buffers, DMAQUT must be
active when OWN (or OWN=) is active.

This section explains the PAL equation for ADDR_OE=, Refer to the
STEERING PAL equation to see the equation (AOE).

ADDR.QE* is active {enabling the address drivers) most of the time.
It only disables the drivers when ownership of the bus is changing
(for example, a new master takes control). At these transition times,
ADDR_OE* is inactive so that the tri-state drivers will not fight the
drivers on the next backplane while they are changing direction.

Refer ta the equation for AOE in the STEERING PAL equation (Table
3-2). AOE = ADDR_OEx inverted. The inverter is in the output stage

of the PAL.

BGACK is asserted {BGACK* pulled low) by all bus masters {except
the 68000) when they are the current master, so ADDR_OE* is
active when BGACK is active.

The term (BG* * DMAOUT*) is true most of the time that the 68000
owns the bus. However, when the 68000 is about to give up the bus,
BG* will go active and thus (BG* * DMAOUT=} will go inactive. It is
important that the address drivers remain on until the end of the fi-
nal 68000 bus cycle when the 68000 is giving up the bus, so the
term AS holds AOE active when BG goes active during the bus cycle.

AS does not last quite long enough, so ASQSQ (which is a slightly de-
layed AS) holds AOE active long enough to finish the cycle.

This section describes when and why the data drivers are turned on
and off. It also describes control of data direction.

Refer to the STEERING PAL equation for DBOE.

Note that all the bus drivers are enabled for every bus cycle unless
BERR* is asserted. This allows for easier use of bus-monitoring tools
such as state analyzers.

Generating D_TO_PROC*

Collision Detection

it is fairly difficult to avoid tri-state fights on the data buffers. In or-
der to get data out to dynamic RAM PICs at an early enough time, we
do not use the data strobes to enable the data drivers, because these
strobes can go active very late in a write cycle.

On a read cycle we use the data strobes, so that in case the cycle
turns out to be a Read-Modify-Write cycle, the drivers will be turned
off (to avoid tri-state fight) while the R/W line is changing state.

Refer to the PAL equation for DBOE in the STEERING PAL appendix,
The term (AS * RD#) turns on the drivers for ali write cycles, includ-
ing the write portion of Read-Modify-Write cycles. Note that since
AS turns off the data drivers, the data hold time is not guaranteed
beyond AS going inactive, so it is poor design practice to try to use
the rising edge of AS*, UDS+, or LDS* to latch data.

The terms (UDS * RD * ASQ) and (LDS * RD * ASQ) turn on the driv-
ers for all read cycles. The UDS and LDS turn off the drivers in the
middle of a Read-Modify-Write cycle.

The ASQ (ASDELAYED equivalent) keeps the data buffers from turn-
ing on until after there has been enough time for the collision detect
circuit to assert BERR+ low and thus disable the data drivers before
they fight (see collision detection).

The inverse of the D_TO_PROC+ signal is called D2P in the PAL equa-
tion.

Each backplane or device that passes the bus or allows more than
one slave device must have a coilision detect circuit. This circuit will
usually be implemented in a PAL. This circuit must detect any in-
stance of two slaves responding to the same bus cycle and assert
BERR=* immediately upon detecting such an error.

The collision circuit has an input (see schematic) SLAVEIN* which

is passed from the upstream backplane or device (if any is present).
If no upstream device is present, the pull-up resistor will hold
SLAVEIN= inactive (high). SLAVEIN= tells the circuit whether or not
an upstream PIC is responding to the current bus cycle as a slave.

The circuit also has one input for each slot on this backplane. If any
PIC on this backplane is responding as a slave, the corresponding
SLAVEn=* will be active.

31

Generating the PROC
Term

Generating NOTCOLIS

The collision circuit also monitors A23 through A19 and OVR* on the
bus, so that the internal reserved address spaces of the Amiga can be
checked. An access to any of the internal address spaces will make
the Amiga respond as the slave unless OVR* (override) is asserted.

Any two slave responses on the same cycle constitute a collision.

Refer to the COLLISION PAL equation in Table 3-5 for this discus-
sion.

Before generating the collision detection equation, we must make
the equation that detects whether the Amiga processor board is re-
sponding to this cycle as a slave. This signal is cailed PROC internally
to the PAL. While it comes out on pin 18, it is not used external to
the PAL.

The term BAS * /A23 * /A22 + /AZ21 * /RESET * /OVR will be true
when the processor board memory is responding to the 2 megabyte
space starting at hex 000000.

Sirnilarly, the next term will be true when the processor board is re-
sponding to the 2 megabyte space that starts at hex AQOOOO.

The next term detects the processor board responding to the 2
megabyte space starting at COO000.

The next term detects the processor board responding to the 1/2
megabyte space starting at EQO0QCO.

And the last term detects the proc board responding to the 1/2
megabyte space starting at FBOO0O0. This takes care of all the spaces
used by the processor board.

Why the inverted name? We would have preferred to call this signal /
COLLISION but our PAL assembler does not allow a NOT sign in the
name on the left side of the equal sign. NOTCOLIS goes out through
the output inverter and becomes/NOTCOLIS which is logically equiv-
alent to NOTNQTCOLIS = COLLISION, so NOTCOLIS being true
inside the PAL will make COLLISION false outside the PAL.

Now that PROC will tell us when the responding slave is inside the
Amiga, we are ready to do collision detection.

In our example, we have seven possible slaves to keep track of. They
are the Amiga board (PROC), five PICs on this backplane, and
SLAVEIN* from the upstream backplane or device. If six of the seven
are inactive at all times, we know that no two are active at the same
time.

Because the slave lines go inactive between bus cycles, there should
not be a case of one slave going active before the previous one went
inactive.

32

Bus Arbitration Circuit

RES* and RESB*

CONFIG_IN*
CONFIG_OUT* Daisy
Chain

By the way, don't worry about two slaves colliding on the upstream
of the backpiane; that backplane has a collision detect circuit of its
own.

Thus. each of the seven product terms indicates that a collision is not
happening at this time. Only one of them needs to be true to know
that a collision is not happening at this time.

The bus arbitration circuit’s main job is to determine which PIC will
recejve BG+ active (Bus Grant) when the 68000 asserts BG*. The cir-
cuit we recommend does this based on priority, where the closest
PIC to the 68000 is the highest priority. You could implement some-
thing fancier as long as only one PIC owns the bus at a time.

PICs are only allowed to assert BR* off the rising edge of 7M. This
allows the bus arbitration circuit to operate synchronously, clocked
by the rising edge of 7M.

The output of the bus arbitration circuit only changes when the
68000 changes the state of BG=. If the 68000 is asserting BG+, the
arbitration circuit passes BG* active to the highest priority active re-
quester. When the 68000 disasserts BG+, the arbitration disasserts
BG* also. Therefore no PIC has a grant.

Note that there are two reset lines going to every PIC, RES* on pin
53 and RESB* on pin 94. The RESB= line is intended to be the nor-
mal reset input to the PIC. All normal PICs will use this line as an in-
put, so it is buffered.

RES* is intended only to be used by thase FICs which are designed to
have the capability of resetting the system. Normal PICs will not
drive nor load this line. Note that because RES* is not buffered, it can
reset the Amiga, as well as resetting ail PICs (via RESB+).

The CONFIG_IN=* signal will be passed to CONFIG_OUT=* at the appro-
priate time if there is a PIC plugged in the slot. On this backplane, we
have used 74LS32s to pass CONFIG.OUT=* to the next slot if there is
no PIC. The pull down resistor allows the CONFIG_IN# signal to pass
directly through the gate to CONFIG_IN* of the next slot if there is

no PiC installed, thus bypassing the empty slot. if a PIC is installed,

the PIC's CONFIG_OUT= driver overrides the pull down resistor.

Another method that would work is to use special pins on the con-
nector at pins 11 and 12, such that 11 and 12 short to each other
when there is no PIC inserted in the connector. This would eliminate
the need for the 74L532 gates.

33

BACKPLANE TIMING
GENERATION

Generating 7M

DOE, ASDELAYED*,
ASQ90*

Clock Buffers

The clock buffers for C1*, C3*, and CDAC were chosen for minimum
propagation delay and minimum skew. Notice that buffered clocks
are passed to the 100 pin edge connectors, but that the unbuffered
clocks are passed to the 86 pin connector that goes on to the next
box in order to minimize propagation delay to the next backpiane.

We generate 7M (equivalent to the processor clock) by:
7M = C1* XNOR C3+

This yields a 7.16Mhz clock which is used to generate ASDELAYED+,
DOE, and ASQO0*. 7M is also passed to the PICs on pin 82 of the
edge connectors, so they will have a cheap clock for accessing the
bus.

DOE (Data output enable) and ASDELAYED+ are the compliment
of each other. ASDELAYED+ is used in the steering PAL (ASQ =
ASDELAYED in the PAL equations) to time turning on of the data
drivers during a read cycle. DOE is passed to the PICs on pin 93 of
the edge connectors, to tell the PICs when to turn on data drivers
during a read cycle. :

Amiga 7™M I I I | I I I

13905 ———3> |

Backplane 7M

CDAC

ASs I

ASMID=

ASDELAYED»

DOE

ASOSC

Backplane Timing Signals

EXAMPLE PIC DESIGN

The PIC at System

Startup

Reading the ID
Locations

This section is a description of the schematic for a small 16 kilobyte
RAM board that we designed as our first test PIC for the expansion
architecture. The schematic for this board is Figure A2, in Appendix A,
[t is valuable as an example because it implements all of the basic fea-
tures of a slave PIC.

The heart of auto-config is in U1 (address register), U2 (address
comparatoer), and U3 (1D PAL and control PAL),

When the board comes out of Reset, CONFIG_OUT* is inactive, and
does not pass the config token on to the next PIC. CONFIG_IN* may
or may not be active at first. If it is not active, the board will not re-
spond to any bus cycles. For instance, we can see at U11 that SLAVE+*
is disabled when CONFIG_IN= is inactive (high), because this does not
allow BOARD_SEL=* to go active.

In turn, BOARD_SEL+* is an input to U3, the control PAL. Without
BOARD_SEL=, all ten of the PAL outputs are held inactive (see PAL
equations for test ram).

Eventually, during execution of the auto config code, CONFIG_IN=*
will be asserted to this PIC between bus cycles (AS# inactive). Notice
that the address latch is tri-stated off so that the pull-up and pull-
down resistors are inputing a pattern of E8 to the address compara-
tor. When the backplane addresses E8xxxx, this board will now re-
spond because CONFIG_IN=* is active but CONFIG_OUT=* is not yet
active. In other words, CONFIGLIN* is enabling board select, and
CONFIG_OUT=* has not yet aliowed the address latch to move the
board to a different address space.

Notice that whenever BOARD_SEL* goes active, SLAVE* will go ac-
tive unless SHUT_UP_FOREVER is latched active. SHUT_UP_FOR-
EVER=* is a feedback latch in the PAL. It is only set by the software if
the board cannot be configured into the system (for instance, if the
user has plugged in toc many large address space PICs and there is
no room left for this one).

If you analyze the PAL equations for BD15 through BD12, you will
see that their data drivers turn on for all reads ANDed with BOARD-
_SEL active, until CONFIG_OUT* is set active (or some exception hap-
pens such as reset, bus error, or shutup).

By the way, if you're not used to PALs, it’s normal old Boolean: *

means AND, / is negation, + is OR. IF(term) means “If the term eval-
uates to TRUE then turn on the tri-state driver”.

35

Further analysis of the BD15-BD12 equations will show that almost
all addresses put out ones; however, remember that most of the nib-
bles are inverted because the spec says they have to be. The inversion
makes it possible to implement the codes in active low PALs; it is just
a cost reduction.

Analysis of the equations shows that the only nibbles (we don't care
about above HEX 80) outputting any zeros are:

00/02 1100 0001
04/06 1111 1001
10/12 11111110
40/42 0000 000C

To interpret this code, we need to remember that the spec says that
all nibbles get inverted except 00, 02, 40, and 42. So our new table
looks like this:

00/02 1100 0001
04/06 00000110
10/12 0000 0001
40/42 0000 0000

And all the other nibbles that were ones are now inverted to zeros.

To illustrate, let’s look at what these codes mean:

Nibble
00/02

04/06
10/12

Data

1100 0001

LIl 001 = 64 kilobytes, the smallest size that

can be requested.

0 = There are no more PICs on this physical
board. It is possible to put more than
one PIC on a physical board, but in
most cases {including this one), we don’t.

0 = This board does not have any Init or

diagnostic code.

0 = Don't link into memory free list, since

the processor might try to use it
and it is only 16 kilobytes masquerading to
the system as 64 kilobytes.

11 = Required by the spec. -

oooo 0110
0000 0001

= Product number = 6

= High byte of manufacturer's number

36

14/16 0000 0000
40/42 0000 0000

Passing CONFIG_OUT*

= Low byte of manufacturer’s number
= Because this PIC does not generate INTs

When you want to program your own [D PAL, just work back to the
equations. First determine what ID pattern you need by reading
about the nibbles in the spec. Write down a table of ones and zeros.
Invert all of these except nibbles 00, 02, 40, and 42. Then, doing one
data line at time, write a product term for each binary zero that you
want to output from the ID PAL. :

The equations for CONFIG_OUT* in this implementation make two
feedback latches in the PAL. The first latch PRE_CONFIG_OUT* is set
during the bus cycle in which the processor does a write to the ad-
dress register. In fact, in this design the rising edge of PRE_CONFI-
G_OUT latches the final Address value into the address latch.

The second latch outputs CONFIG_OUT=. This latch goes active after
AS* goes inactive at the end of the bus cycle in which the new ad-
dress was written. Notice that CONFIG_.OUT=* enables the address
latch U1, so it now provides the new address range to the compara-
tor.

CONFIG_OUT* enables the next PIC in the chain, and remains active
until a system reset or power down occurs. :

TABLE 3-1 —TIMING SPECIFICATIONS

Timing Requirements for Backplane

TIMING REQUIREMENTS FOR BACKPLANE

Num Characteristic Min Max Unit
1 AS+ UDS* LDS* Delay 2 8 ns
2 Address 23-1 delay. 2 8 ns
3 "7M(S4 RISE) to Data Enable during Read 0 ns
4 7M (54 RISE) to Data Valid 35 ns
5 Data 15-0 Delay to Qutput 8 ns
6 SLAVEIN or SLAVE to SLAVEOUT Delay 0 25 ns

37

Timing Requirements for PIC

TIMING REQUIREMENTS FOR PIC AS SLAVE (RD & WR CYCLES)

Num Characteristic Min Max Unit
1 AS+ low to SLAVE* Low 0 35 ns
2 AS+ high to SLAVE* high 0 50 ns
3 AS* low to XRDY low (to insert wait) 0 60 ns
4 Read Data Valid to local 7M low (57) 60 ns
5 AS+ low to OVR* low 0 50 ns
6 AS+ high to OVR* high 0 50 ns

TIMING REQUIREMENTS FOR PIC AS MASTER (RD & WR CYCLES)

Num Characteristic Min Maix Unit
1 7M high(S2) to AS* low 0 67 ns
2 Address 23-1 Valid to AS+* low 30 ns
3 7M high (54) to Data Valid Wr Cycle 0 ns

Timing to Backplane
TIMING TO BACKPLANE

Num Characteristic Min Max Unit
1 AS* Low to CDAC Low (Setup) 20 ns
2 AS+ High to CDAC High (Setup) 20 ns

Timing to PIC
TIMING TO PIC (PIC IN SLAVE MODE)

Num Characteristic Min Max Unit
1 Valid Address to AS* Low 10 ns
2 Valid Data from 7M High(S4) on Wr to PIC 35 ns

TIMING TO PIC (PIC IN MASTER MODE)

Num Characteristic Min Max Unit

1 Valid Data setup to Local 7M low(57) 15 ns

2000 SYSTEM BUS
LOADING

The following numbers and notations are used for standard load and
drive values:

From A2000 To A2000
Type (IC input load) (1C output drive)
F-Driver TTL FD 20pA @27V fd 20V@ —15mA
—1.6mA @ 05V 0.5V @ 64mA
F-Series TTL F 20uA @27V f 27V @ —1mA
—0.6mA @ 0.5V 05V @ 20mA
LS-Driver TTL LSD 20pnA @27V Isd 20V@ —15mA
—0.4mA @ 0.4V 05V @ 24mA
LS-Series TTL LS 200A @27V Is 2.7V @ —400pA
—0.4mA @ 04V 0.5V @ 8mA
MOS MOS 10pA @ 24V mos 24V @ —200pA
_ —10pA @ 04V 04V @ 3.2mA
Open Collector oc FROM RESISTOR
' 05V @ 8mA

Any lesser input load can be used on a signal in place of a greater
load or equivalent load. Varying the number of load eiements while
still meeting the DC loading criteria can be done if necessary, but it is
not a good idea, as it can still exceed the expected capacitive loading
on the signal.

A final type of drive is the open collector (oc). Some PIC outputs
must be open collector, as they are in a wired-or configuration with
the same output from other PICs or motherboard signals.

Most of the system bus signals provide a standard drive to their re-
spective connectors. If your drivers can meet the input specification,
don’t worry about what is actually required. However, even if your
loading doesn't exceed the specified drive capacity of slot signal men-
tioned above, consult the following chart for specific signals that may
provide less drive than a standard signal of that type. Signals that
match the STANDARD loading are not separately listed.

Named Expansion Coprocessor Video
Signals DIR Slots (each) Slot Slot
STANDARD I 2F 1F 1F
STANDARD 0 10f 10f 10f
/DTACK] 1F 1F

0 10f 10f
/OVR 0 oc oc
XRDY 0 ot oc
/INT2 0 oc oc
/INTE 0 oC ac
/EINT1 0 oc
/EINT4 0 ocC
/EINTS 0 ocC

39

Named Expansion Coprocessor Video

Signals DIR Slots (each) Slot Slot
{EINT7 0 oc
/SLAVED] 2f
/CFGOUTn 0 2f
/COPCFG 0 2f
E Clock | 1F 1F
7MHz Clock [1F 1F
/BERR | 1F 1F
0 oc oc
VPA 1 1F 1F
9] o ocC
/VMA | 1F 1F
0 10f 10f
/RST I IF - 1F
0 oc oc
HLT] 1F 1F
0 oc oC
/OWN 0 oc¢
/BRn 0 2f
/CBR I 2F
0 2f
fCBG | 2F
0 2f
/BGACK i 1F 1F
G ocC _ oc
/BOSS 0 ' 2f
XCLK 0 2f
FXCLKEN 0 2f

40

TABLE 3-2

PAL16L8
STEERING150R17 REV3
11-17-85

AMIGA

/SLVOUT RD /ASQ /ASQS0 COLLIS /BG /AS /BGACK /DMAIN GND
JOWN /AQE /UDS /BERR /DMAOUT /LDS /DBOE /RES /D2P VCC

= AS =/RD * /BERR +
UDS * RD = ASQ * /BERR +
LDS =+ RD = ASQ) = /BERR

DBOE

D2P = /DMAOUT = SLVOUT * RD +
DMAQCUT * /SLVOUT * /RD +
DMAOUT * SLVOUT

= BGACK +
/BG = /DMAOUT +
AS + -
ASQS0

ACE

DMAOUT = DMAIN + OWN
IF (/RES = COLLIS) BERR = VCC

DESCRIPTION

:DATA DRIVERS DURING WRITE CYCLE
:TURN ON DRIVERS LATE FOR RD

:UDS AND LDS PROTECT RD MOD WR

:TO AVOID TRI__STATE FIGHT
:DOWNSTREAM READS UPSTREAM SLAVE
:UPSTREAM WRITES DOWNSTREAM SLAVE
:MASTER AND SLAVE ARE UPSTREAM

:AS KEEPS ADDR WHEN /BG DROPS
:ASQ90 MAINTAINS VALID ADDR ON
. LAST PROC CYCLE

SLVOUT = SLAVEOUT,ASQ = AS DELAYED,ASQ90 = AS CLKD ON LOW EDGE OF 7M,

BG = BUS GRANT,OWN = LOCAL OWN

COLLIS = BUS COLLISION,AQE = ADDR OUTPUT EN,DOE = DATA OE

RES = RESET.DZ2P = DATA TO PROCESSOR

UDS LDS PROTECT AGAINST RDMODIFYWRITE 3STFIGHT & BERR= /DOE

41

TABLE 3-3

PAL16R6
ARBITRATE REV1
1-6-86

AMIGA

7M /BRIN /RES /BGIN /BR5 /BR4 /BR3 /BRZ /BR1 GND
GROUND /BGOUT /BGOLD /BG5S /BG4 /BG3 /BG2 /BG1 /BR VCC

BG1 = BGIN = /BGOLD * BR1 + /RES + GENERATE BG1
BGIN * BG1 * /RES ;HOLD UNTIL /BG
BG2 = BGIN = /BGOLD * BRZ * /BR1 * /RES +
BGIN = BGZ * /RES
BG3 = BGIN * /BGOLD * BR3 = /BR1 */BRZ. * . /RES +
BGIN * BG3 = /RES
BG4 = BGIN = /BGOLD * BR4 * /BR1 * /BRZ * /BR3 * /RES +
BGIN * BG4 * /RES
BG5 = BGIN * /BGOLD *= BRS * /BR1 * /BR2 * /BR3 + /BR4 * /RES +
BGIN * BG5 * /RES
BGOLD = BGIN STORE OLD STATE OF BG
BR = BRIN */RES +) :BR IS RQST TC 68K
BR1 = /RES +
BRZ = /RES +
BR3 =« /RES +
BR4 = /RES +
BR5 =/RES

BGOUT = BGIN » BGOLD = /BG1 */BG2 * /BG3 * /BG4 = /BG5S
DESCRIPTION

BG1 1S HIGHEST PRIORITY

42

TABLE 3-4

PALZOL10

TESTRAM

9-11-85
COMMODORE-AMIGA

/ASQ /ASQQ RD /BDSEL /BERR A6 A5 A4 A3 AZ
A1 GND /RES BD12 BD13 BD14 BD15 /PRECON /CONOUT /SHUTUP

/RAMOE /WP /DBOE VCC

DBOE = /RES*BDSEL+BERR+/SHUTUP+/RD + :WRITES TURN ON
/RES*BDSEL+BERR*SHUTUP* RD*ASQ %%LBE[AYS THE READ

WP = /RES*ASQ*ASQQ*BDSEL*CONOUT*/SHUTUP+/RD+BERR

RAMOE = /RES=ASQ+RD+CONOUT»/BERR*BDSEL

SHUTUP = /RES*BDSEL*/RD*ASQ+/CONOUT+AG*/AS+A4+*A3*AZ +
/RES*SHUTUP

PRECON = /RES=SHUTUP +
/RES+/RD*BDSEL*ASQQ*AG+/AS+AD*A3+/AZ¥/A1 +
/RES*PRECON

CONOUT == /RES*ASQ+PRECON +
/RES*CONOUT

IF (/RES*BDSEL»/CONOUT*RD*/BERR+/SHUTUP) /BD15 =
TABH/AS*/AAx/AZ+/AZ*AT1 +
AG+/AS*/ Ad+/A3+/AZ

IF (/RES*BDSEL+/CONOUT*RD*/BERR*/SHUTUP) /BD14 =
/AB*/AS+/A4+/A3*A1 +
AG*/AS#/Ad+/A3+/AZ

IF (/RES*BDSEL+CONOQUT=*RD+/BERR+/SHUTUP) /BD13 =
/AE+/AS*/AA*/A3+/AZ +
IAG*/AD+/ AQ+/A3*AZ*AT1 +
AB*/AD*/ Ad*/A3*/A2

IF (/RES*BDSEL*/CONOUT*RD*/BERR*/SHUTUP) /BD12 =
IAGH/ASHAAX/ A3/ AZ*AT +
JAG*/AS*A4+/A3+/AZ*A1 +
AB*/AS*/AL+/A3*/AZ

DESCRIPTION

43

TABLE 3-5

PAL16GLS
COLLISION
11-17-85
AMIGA

/BAS /SLV1 /SLV2 /SLV3 /SLV4 /SLVE /SLVIN AZ23 AZ22 GND
AZ21 /SLVOUT AZ20 A19 /OVR /RESET P17 /PROC /NOTCOLIS VCC

SLVOUT = SLV1 + SLv2 + SLV3 + SLv4 + SLV5 + SLVIN

NOTCOLIS =

/SLV1 * /SLVZ * /SLV3 * /SLV4 * /SLV5 * /SLVIN +
/PROC * /SLVZ = /SLV3 = /SLV4 = /SLVB = /SLVIN +
/PROC = /SLV1 * /SLV3 = /SLV4 * /SLVE * /SLVIN +
/PROC * /5LV1 = /5LV2 * /SLV4 * /SLV5 = /SLVIN +
/PROC * /SLV1 * /SLVZ2 * /SLV3 * /SLV5 # /SLVIN +
/PROC = /S5LV1 * /SLVZ * /SLV3 * /SLV4 * /SLVIN +
/PROC * /SLV1 = /SLVZ2 * /SLV3 * /SLV4 * /SLV5

PROC = BAS * /A23 x /AZ22 + [A21 * /RESET = /OVR +
BAS * AZ23* /AZZ2 = AZ1 * /RESET = /OVR +
BAS * AZ23+ AZZ * /AZ] * /RESET * /OVR +
BAS + A23+ A22 * A21 */A20 * /A19 /RESET » /OVR +
BAS + AZ3» A22 + AZ1 » A20 = A19 = /RESET = /OVR

DESCRIPTION

EMPTY

INTERFACING TO THE
68K BUS CONNECTOR
ON THE AMIGA 500

TIMING
Clocks

This section gives the necessary information for interfacing to the
68000 bus connector on the left side of the Amiga AS00 (or the
right side of the A1000).

THE CONNECTOR ON THE AMIGA

The connector is a standard dual row 86 finger (43 on a side} edge
connector, spaced on .1" centers. Here are some part numbers of
connectors that are compatible:

solder tail AMP 2-530841-1
wire wrap AMP 4-530396-7
card extender AMP 1-530826-2

See accompanying drawing for physical dimensions of this connec-
tor on the A500, Figure A-3 in Appendix A.

For this discussion, see Figure 3.2.

The entire computer board is run synchronously to the 3.57954Mhz
color clock {C1). This is accomplished by generating a number of
sub-multiple frequencies from our master 28.63636Mhz crystal os-
cillator. The following are the primary clocks on the board:

Name Description

C1 The 3.579545Mhz Color Clock

c2 C1 shifted 45 degrees later

C3 C1 shifted 90 degrees later

4 C1 shifted 135 degrees later

™ C1 XORed with C3* {7.15909Mhz)

DAC 7M shifted 90 degrees later

7M is the processor clock for the 68000 microprocessor. C1-C4 and
DAC are used to clock the custom chips and for determining the tim-
ing of signals to the memory arrays.

The above frequencies are true for NTSC Amigas. A PAL Amiga will
operate slightly slower, with a main clock of 28.37516Mhz. This i3
divided down to get 7M =7.09379Mhz and C1 =3.546895Mhz. A
special circuit is required to take five fourths of C1 to derive the PAL
colorburst frequency of 4.43361875Mhz.

The following clocks are available at the edge connector:
Name Pin Description

C3+ 14 C3 inverted
CDAC 15 DAC equivalent
Ci» 16 C1 inverted

Note that 7M {the processor clock) is not available at the connector;
it can be easily generated by:

C3* XNOR C1* = 7M equivalent

45

¥ you need a 14.31818Mhz synchronous clock, you can generate it
by:

(7Mequiv) XOR (CDAC) = 14M equivalent

14M | j | | | | | | | [1 | | |

™ | [Syecasal__ T L [
— 13y ————>

coac LT L I L
o1 i fi1stQrel 1 '
a | | } l
I P | L] L
ch l L | |
Cls | L |
P | [| I

Fig. 3.2 Amiga System Clocks

Bus Timing The 68000 is connected directly to the 86 pin connector, there are
| no buffers between the 68000 and the connector. Two control in-
puts, VPA= and DTACK= are driven by logic on the Amiga and should
not be driven by your circuitry, unless OVR+ is used to disable this
logic.

Many boxes are being designed which pass the bus (buffered) out in
daisy chain fashion.

In order to allow your device to be the second in the chain, take into
account an extra level of signal buffers on:

AS=, UDS*, LDS*, Address, Data. Clocks

Furthermore, if you are designing a DMA device, the Amiga provides
data in response to a Read very late (50ns prior to the fall of S6). If
your DMA device is looking at this data through two or three
74F245's (7ns each), this data will not be valid at your DMA control-
ler until approximately 25ns prior to the fall of S6.

46

Slave Bus Timing

CPU bus timing is based on an 8Mhz 68000, with only one excep-
tion: under normal operation, the bus control PAL asserts DTACK+
for you. DO NOT ASSERT DTACK=; do not attach any outputs to the
DTACK= line.

Details of 68000 timing are available in the Motorola 68000 hard-
ware manual. If you are designing a bus slave, most bus timing is per
the 68000 spec, except that the CPU will pull DTACK# for you. If you
need to delay our assertion of DTACK*, you must pull XRDY (Pin 18)
no later than 60ns after the assertion of AS=. You should release
XRDY when you are ready to compiete the bus cycle.

Also remember that in the expansion architecture, data drivers
should not turn on during a Read cycle until 54.

For those of you who have not designed anything on the 68K bus be-
fore, this description is intended to make looking at the Motorola
timing diagrams easier. For more details and timing specs see
Motorola hardware manual (fold out timing diagrams in the back

of the book.}

See Figure 3.2 in this section. Motorola labels the states of the pro-
cessor clock SO-S7. The processor starts driving the address lines
during S1, and asserts AS* (Address Strobe) during S2. If the cycle is
a read, the data strobes (UDS#,LDS*) are asserted during S2 also
{they are delayed until S4 on a write).

The board responds to AS* by asserting DTACK#* (unless you delay
DTACK by pulling XRDY low). In order to run a normai 4 clock bus
cycle, DTACK* meets the setup time prior to S5. DTACK= is the ac-
knowledge to the bus cycle. If DTACK= is not asserted, the 68000
stays in the middle of the bus cycle until DTACK+ (or BERR* or
VPA#) is asserted. Once DTACK= is asserted, the processor completes
the read (or write) and ends the cycle by disasserting the strobes
(AS*,UDS*LDS#) and tri-stating its bus drivers.

If the slave you are designing cannot respond fast enough to success-
fully complete a 4 clock bus cycle, it must pull XRDY low within 60ns
after the assertion of AS* (and of course the correct address). Our
board then will not assert DTACK=* until you release XRDY. You
should drive XRDY with an open collector output; we provide a 1K
pullup resistor on our board.

47

™ = CLK

A23-Al

AS*

UDSx»,LDS=*

D15-DO

R/W

DTACK=»

M = CLK

A23-Al

ASs

UDSx,LDS+

D15-DO

R/W

DTACK»

SO 51 82 53 54 §5 36 57 S0 etc

SN/ S S

XXXXXXX AXXX

—— —
—\ —

XXXXXX XXXX

—/

\ .

Fig. 3.3 Standard 4 Clock Read Cycle

0 s1 sz s3 s& S5 S6 ST SO o
N/ _/ /S
XXXXXXX XXXX

— —
\ /

XXXXX XXX

\ /

Fig. 3.4 Standard 4 Clock Write Cycle

48

S0 S1

82 S3 54 SW 5w S5 56 57 S0 ete

7M = CLK / \ J___/_\ / \ / __/—_J—

A23-Al XXXXXXX XXXX
AS» \ /
]
XRDY N\ /
60ns Max =——» ‘ — |
DTACK+ —\ /
D15-D0 XXXX XXX
Fig. 3.5 Using XRDY to Delay DTACK«
Master Bus Timing All bus masters must run synchronously to 7M (equivalent), as does

BGACK* and OWN+*
Timing to Avoid Bus
Contention

the 68000 in the Amiga.

The necessary information for designing & bus master is in the
68000 hardware manual. A master must meet all of the bus timing
specs of an 8Mhz 68000; for example, valid address must precede
AS* by at least 30ns.

If you are designing a bus master card that will plug into a box, re-

member that the address will have to propagate through the address
drivers built into the box; you should probably allow for the prop de-
lay of three 74F245's in addition to the required 30ns.

The strobes, such as AS+ UDS*,LDS*, must all function as they would
basically on the 68000 spec. A master must also respond to DTACK=,
HALT*, and BERR* correctly.

The basic timing for bus arbitration conforms very closely to the
68000 and the 68440. When the new master has received BG* and
all other signals necessary to take mastership, it must assert OWN+
before it asserts BGACK*. This gives the address drivers on the bus
time to change direction, if necessary, before BGACK+ turns them
on.

At the end of the DMA cycle, BGACK* must be disasserted before
OWNs is disasserted.

BR* should always be asserted off the rising edge of 7M, and should
be valid no later than 60ns after that edge.

49

Section 3.2

Driver documentation

OVERVIEW

This section discusses how the “binddrivers” program finds your
driver and links it into the system. It also hints on how to write your
code to take advantage of this.

First off, the expansion library goes out and configures the expan-
sion boards in the system. It puts each board in its own address
space, and links memory boards into the memory free pool. This is
done by the expansion library's ConfigChain entry point. This code is
intended to be run early on in system startup, before any other code
is around.

Later on, after the DOS is running, the binddrivers program should
be run. This program searches the directory “SYS:Expansion™ for
workbench icon files. If it finds one with a tooltypes variable “PROD-
UCT" then it parses the rest of the line (see below) and looks for an
unconfigured board that matches the description.

This method makes user installation of a new driver trivial: the user
only has to copy a workbench icon into the expansion directory on
his sys disk. Everything else is automatic the next time he boots.

In addition, the bootdrivers program may be run repeatedly without
ill effect. Devices will not be configured twice, so binddrivers may be
run after a new driver is installed (so the user does not have to re-
boot after instailing a driver).

Here is an overview of the process.

search:
for each file that ends in .info, do test ().

test:

1. Call GetDiskObject() on this file. If not a workbench object, re-
turn.

2. Call FindToolType () to see if there is a PRODUCT definition. If
not, return.

3. If the description does not match an unconfigured board, return.
if there are boards, link them ali together and record them in a
static area.

4. LoadSeg {) the code file. If LoadSeg fails, return.

5. Search the first hunk for a Resident structure. [f no structure,
UnLoadSeg () the segment and return.

51

6. InitResident () the loaded code. If an error {NULL) is returned,
UnLoadSeg () the segment.

your driver code:
Find the list of boards. Mark them a configured, and record your
driver in them (for system debugging). Return non-zero value if
everything went ok. If something went wrong (or you just want
to be unloaded) then return NULL.

Now for some more detail.

1. GetDiskObject () is a routine in icon.library. [t will read in the disk
object, and return a pointer to it. Part of a disk object structure
is a “tooltypes” field.

2. The FindToolType () routine (also in the icon.library) searches
the tooltypes database associated with the disk object. If there is
an entry for PRODUCT then it is assumed that this is an info file
for a driver. The PRODUCT field is of the format:

PRODUCT = <idlist>

<idlist> == <id> | <idlist>BAR<id>

<id>> == <manufacturer> | <manufacturer>SLASH<product>
< manufacturer> :: = <{a decimal number>

<product> = <Ca decimal number>

BAR ::= <a vertical bar — *|'>

SLASH ::= <Ca forwards slant char — /">

Spaces are not legal. Some examples:

PRODUCT = 1000/30 ; matches man 1000, product 30

PRODUCT = 1000 ; matches any man 1000 board

PRODUCT = 1000/20/1000/21 ; matches man 1000, product 20
ar 21

3. Each unconfigured beard in the system is searched. An unconfi-
gured board has the CDB_CONFIGME bit set in the cd_Fiags byte.
Search all these unconfigured boards to find the ones that match
any of the product codes. Link ail these boards together using the
cd_NextCD field of the ConFigDev structure. Record the head of
this list, along with the product fieid and the name of the file that
was loaded in a CurrentBinding structure. This structure may be
retrieved via the GetCurrentBinding () call.

4. Attempt to load in the driver. The driver may be a devices, library,

task, process, or anything else that you may want. The only re-
quirement is that it have a Resident structure in its first hunk. (By
the way, this means that you can not directly use startup.obj).

52

HINTS FOR WRITING
YOUR DRIVER CODE:

This is why we refer to loading a “driver” rather than a “device”
— you can write any sort of code you want to handie your device.

_ Binddriver will search the first hunk for a Resident structure. [f it

cannot find one, it will assume some awful mistake has been
made, and will unload the segment.

. Finally we get to running some of YOUR code. InitResident (} is

used to start you off and running. The return value from InitResi-
dent (and therefore the return value from your init entry point)
will be checked on exit. If it is zero then the segment will be un-
loaded. This can be useful if you only need to do a bit of initializa-
tion and then can go away, such as allocate additional expansion
memory for a non-expansion architecture board.

Your driver will be launched via InitResident {) as discussed
above. If you use the underdocumented, but very useful RTF_AU-
TOINIT option you will have a library node constructed for you,
and then have the code you specified enter. If you don't use
RTF_AUTOINIT, then your code will be entered directly.

You should (among everything else you might be doing) open the
expansion.library and ask for the current buildings {GetCurrent-
Binding()). In this structure will be the head of a singly linked list
of ConfigDev structures. The structures are linked via the cd
NextCD field. You should deal with each member of the list —
they are for youl

There are two actions you must take. One is to unset the CDB
CONFIGME bit in the cd_Flags. If you do not do this then the
board is still available for other drivers (of course, you may actu-
ally want this . ..). If you do unset the CONFIGME bit, please also
record your “node” in the cd_Driver structure. It is assumed that
this is in an exec node, whose LN_ZNAME field points your name,
and LN_TYPE field is your type of “thing” — library. resource, de-
vice, task, etc. | know that this will not always apply to you, but
try it anyway. It will help the rest of us debug the system when
something goes wrong.

You have now done everything you wanted to. Your init routine is

about to return. If you return a zero, then your code wili be un-
loaded. If you return non-zero, then you will stay around.

53

Section 3.3

Software for Amiga Expansion

EXPANSION.LIBRARY/
ADDDOSNODE

This section contains listings and information on the following
expansion software commands:

expansion.library/AddDosNode
expansion.library/MakeDosNode
Systemy/Libraries/Expansion/AddConfigDev
Systerry/Libraries/Expansion/AllocBoardMem
Systemy/Libraries/Expansion/AllocConfigDev
Systemy/Libraries/Expansion/AllocExpansionMem
System/Libraries/Expansion/ConfigBoard
System/Libraries/Expansion/ConfigChain
System/Libraries/Expansion/FindConfigDev
System/Libraries/Expansion/FreeBoardMem
System/Libraries/Expansion/FreeConfigDev
System/Libraries/Expansion/FreeExpansionMem
System/Libraries/Expansion/GetCurrentBinding
System/Libraries/Expansion/ObtainConfigBinding
Systemy/Libraries/Expansion/ReadExpansionByte
Systemy/Libraries/Expansion/ ReadExpansionRom
Systemy/Libraries/Expansion/ReleaseConfigBinding
Systerm/Libraries/Expansion/RemConfigDev
Systeny/Libraries/Expansion/SetCurrentBinding
System/Libraries/Expansion/WriteExpansionByte

NAME

AddDosNode — mount a disk to the system

SYNOPSIS

ok = AddDosNode({ bootPri, flags, deviceNode)
DO DO D1 A
FUNCTION

This routine makes sure that your disk device (or a device that wants
to be treated as if it was a disk...) will be entered into the system. If
the dos is already up and running, then it will be entered immediate-
ly. If the dos has not yet been run then the data will be recorded, and
the dos will get it later. ,

55

We hope to eventually try and boot off a disk device. We will try and
boot off of each device in turn, based on priority, if there is no boot
floppy in the floppy disk drive. As of this writing that facility does not
yet exist.

There is only one additional piece of magic done by AddDosNode. If
there is no executable code specified in the deviceNode structure
(e.g. dn_SegList, dn_Handler, and dn_Task are all null) then the stan-
dard dos file handler is used for your device.

Documentation note: a “task’” as used here is a dos-task, not an exec-
task. A dos-task, in the strictest sense, is the "address of an exec-
style message port. In general, it is a pointer to a process’s
pr_MsgPort field {e.g. a constant number of bytes after an exec
port).

INPUTS

bootPri — a BYTE quantity with the boot priority for this disk.
This priority is only for which disks should be looked at: the actual
disk booted from will be the first disk with a valid boot block. [f
no disk is found then the “bootme™ hand will come up and the
hootstrap code will wait for a floppy to be inserted. Recommend
priority assignments are:

+5 — unit zero for the floppy disk. The floppy should always
be highest priority to allow the user to abort out of a hard disk
boot.

0 — the run of the mill hard disk

-5 — a "network” disk (local disks should take priority).
—128 — don't even bother to boot from this device.

flags — additional flag bits for the call:
ADN_TARTPROC (bit O) — start a handler process imme-
diately.
Normally the process is started only when the device node is
first referenced. This bit is meaningless if you have already
specified a handler process {non-null dn_Task]).

deviceNode — a legal DOS device node, properly initialized.
Typically this will be the result of a MakeDosNode() call, but feel
free to manufacture your own if you need to. If deviceNode is null
then AddDosNode does nothing.

RESULTS

ok - non-zero everything went ok, zero if we ran out of memory or
some other weirdness happened.

56

EXPANSION.LIBRARY/
MAKEDOSNODE

EXAMPLES

/* enter a bootable disk into the system. Start a file handler

** process immediately.

*/

AddDosNode(0, ADNF_STARTPROC, MakeDosNode(paramPacket)
): '
BUGS

The flexible boot strategy is only that — strategy. It still needs to be
reflected in code somewhere. :

SEE ALSO

MakeDosNode

NAME

MakeDosNode — construct dos data structures that a disk needs

SYNOPSIS

deviceNode = MakeDosNode(parameterPkt)
Do AOQ

FUNCTION

This routine manufactures the data structures needed to enter a dos
disk device into the system. This consists of a DeviceNode, a
FileSysStartupMsg, a disk environment vector, and up to two bepl
strings. See the libraries/dosextens and libraries/filehandler include
files for more information.

MakeDosNode will allocate all the memory it needs, and then link the
various structure together. It will make sure all the structures are
long-word aligned (as required by the DOS). It then returns the in-
formation to the user so he can change anything else that needs
changing. Typically he will then cail AddDosNode() to enter the new
device into the dos tables.

INPUTS

parameterPkt - a longword array containing ail the information
needed to initialize the data structures. Normally | would have pro-
vided a structure for this, but the variable length of the packet
caused problems. The two strings are null terminated strings, like all
ather exec strings.

57

longword description

string with dos handier name
string with exec device name
unit number (for OpenDevice)
flags {for OpenDevice)
of longwords in rest of environment
-n file handler environment (see libraries/file-
handler.h)

nhwWwhn—0O

RESULTS

deviceNode — pointer to initialize device node structure, or null if
there was not enough memory.

EXAMPLES
/* set up a 3.5" amiga format floppy drive for unit 1 %/

char execName[] = “trackdisk.device™;
char dosName[] = “df1™;

ULONG parmPkt[] = [
(ULONG) dosName,
(ULONG) execName,

1, /* unit number */

0, /* OpenDevice flags */

/* here is the environment block */

11, ~ /* table upper bound */

512>>2, /* # longwords in a block */

/* sector origin — unused */

/* number of surfaces */

/* secs per logical block — unused */

/* secs per track */

/* reserved blocks — 2 boot blocks */

f* 7?7 — unused */

/* interleave */

/* lower cylinder */

/* upper cylinder */

/* number of buffers */

—
-

VHOOONS=NO

s:cruct Device Node *node, *MakeDosNode();
nocde = MakeDosNode(parmPkt);

BUGS
SEE ALSO

AddDosNode

SYSTEM/LIBRARIES/
EXPANSION/
ADDCONFIGDEV

SYSTEM/LIBRARIES/
EXPANSION/
ALLOCBOARDMEM

NAME

'AddConfigDev — add a new ConfigDev structure to the system

SYNOPSIS

AddConfigDev(configDev)
AD

FUNCTION

This routine adds the specified ConfigDev structure to the list of
Configuration Devices in the system.

INPUTS

configDev — a valid ConfigDev structure.
RESULTS

EXCEPTIONS

SEE ALSO

RemConfigDev

BUGS

NAME

AllocBoardMem — allocate standard device expansion memory
SYNOPSIS |

startSlot = AllocBoardMem(slotSpec)
DO Do

FUNCTION

This function allocates numslots of expansion space {each slot is
E_SLOTSIZE bytes). It returns the slot number of the start of the ex-
pansion memory. The EC_.MEMADDR macro may be used to convert
this to a memory address.

AllocBoardMem() knows about the intracacies of expansion board
hardware and will allocate the proper expansion memory for each
board type.

59

SYSTEM/LIBRARIES/
EXPANSION/
ALLOCCONFIGDEV

INPUTS

stotSpec — the memory size field of the Type byte of an expansion
board

RESULTS
startSlot — the slot number that was allocated. or -1 for error.
EXAMPLES

struct ExpansionRom *er:;
slot = AllocBoardMem(er->er_Type & ERT_MEMMASK)

EXCEPTIONS
SEE ALSO
AllocExpansionMem. FreeExpansionMem, FreeBoardMem

BUGS

NAME
AllocConfigDev — allocate a ConfigDev structure
SYNOPSIS

configDev = AllocConfigDev()
DO

FUNCTION

This routine returns the address of a ConfigDev structure. It is pro-
vided so new fields can be added to the structure without breaking

old. existing code. The structure is cleared when it is returned to the
user.

INPUTS

RESULTS

configDev — either a valid ConfigDev structure or NULL.

EXCEPTIONS

SYSTEM/LIBRARIES/
EXPANSION/
ALLOCEXPANSIONMEM

SEE ALSO
FreeConfigDev

BUGS

NAME

AllocExpansionMem — allocate expansion remory

SYNOPSIS

startSlot = AllocExpansionMem(numSiots. slotOffset)
DO DO Dt
FUNCTION

This function allocates numsltots of expansion space (each stot is
E_SLOTSIZE bytes). It returns the slot number of the start of the
expansion memory. The EC_EMADDR macro may be used to convert
this to a memory address.

Boards that fit the expansion architecture have alignment rules.
Normally a board must be on a binary boundary of its size. Four
and Eight megabyte boards have special rules. User defined boards
might have other special rules.

The routine AliocBoardMem(} knows about all the allocation rules
for standard boards. Most users will want to use that routine if they
want memory for a standard expansion device.
If AllocExpansionMem() succeeds. the startSlot will satisfy the
following equation:

(startSlot — slotOffset) MOD slotAlign = O
INPUTS

numSlots — the number of slots required.
slotOffset — an offset from that boundary for startSlot.

RESULTS

startSlot — the slot number that was allocated. or -1 for error.

SYSTEM/LIBRARIES/
EXPANSION/
CONFIGBOARD

EXAMPLES
AllocExpansionMem(2, 0)

Tries to allocate 2 slots on a two slot boundary.
AllocExpansionMem(64, 32) '

This is the allocation rule for 4 meg boards. It allocates 4 megabytes
(64 slots) on an odd 2 meg boundary.

EXCEPTIONS

SEE ALSO

FreeExpansionMem, AllocBoardMem, FreeBoardMem
BUGS

NAME

ConfigBoard — configure a board

SYNOPSIS

error = ConfigBoard(board, configDev)
DOAO Al

FUNCTION

This routine configures an expansion beard. The board will generally
live at E.EXPANSIONBASE, but the base is passed as a parameter to
allow future compatibility. The configDev parameter must be a valid
configDev that has already had ReadExpansionRom() called on it.

ConfigBoard will allocate expansion memory and place the board at
its new address. [t will update configDev accordingly. If there is not
enough expansion memory for this board then an error will be re-
turned.

INPUTS

board — the current address that the expansion board is respond-
ing.

configDev — an initialized ConfigDev structure.

RESULTS

error — non-zero if there was a problem configuring this board

62

SYSTEM/LIBRARIES/
EXPANSION/
CONFIGCHAIN

EXCEPTIONS
SEE ALSO
FreeConfigDev
BUGS

NAME

ConfigChain — configure the whole damn system

SYNOPSIS

error = ConfigChain(baseAddr)
DO AQ
FUNCTION

This is the big onel This routine will take a base address (generally
E.EXPANSIONBASE) and configure all the devices that live there.
This routine will call all the other routines that might need to be
called. All boards that are found will be linked into the configuration
list.

INPUTS

baseAddr — the base address to start looking for boards.
RESULTS

error — non-zero if something went wrong.

EXCEPTIONS

SEE ALSD

FreeConfigDev

BUGS

63

SYSTEM/LIBRARIES/
EXPANSION/
FINDCONFIGDEV

NAME

FindConfigDev — find a matching ConfigDev entry

SYNQPSIS

configlev = FindConfigDev(oldConfigDev, manufacturer, product)
DO AD DO D1
FUNCTION

This routine searches the list of existing ConfigDev structures in the
system and looks for one that has the specified manufacturer and
product codes.

ff the oldConfigDev is NULL the the search is from the start of the list
of configuration devices. [f it is not nuil then it searches from the
first configuration device entry AFTER oldConfigDev.

A code of -1 is treated as a wildcard — e.g. it matches any manufac-
turer (or product)

INPUTS

oldConfigDev — a valid ConfigDev structure. or NULL to start from
the start of the list.

manufacturer — the manufacturer code being searched for. or -1 to
ignore manufacturer numbers.

product — the product code being searched for. or -1 to ignore
product numbers.

RESULTS

configDev — the next ConfigDev entry that matches the manufac-
turer and product codes, or NULL if there are no more matches.

EXCEPTIONS

EXAMPLES

/* to find all configdevs of the proper type */

struct ConfigDev *cd = NULL;

while(¢cd = FindConfigDev(cd. MANUFACTURER. PRODUCT)) |
/* do something with the returned ConfigDev */

]

SEE ALSO

BUGS

SYSTEM/LIBRARIES/
EXPANSION/
FREEBOARDMEM

NAME

FreeBoardMem — allocate standard device expansion memory

SYNOPSIS

FreeBoardMem(startSlot. slotSpec)
DO D1

FUNCTION

This function frees numslots of expansion space (each slot is
E SLOTSIZE bytes). It is the inverse function of AllocBoardMemy).

INPUTS

startSlot — a slot number in expansion space.

slotSpec — the memory size field of the Type byte of an expansion
board

RESULTS

EXAMPLES

struct ExpansionRom *er;

int startSlot:

int slotSpec;

slotSpec = er->er_Type & ERT_MEMMASK:
startSlot = AllocBoardMem(er->>er Type & ERT_MEMMAK);

if(startSlot [= -1) [

FreeBoardMem(startSlot, slotSpec);
]

EXCEPTIONS

If the caller tries to free a slot that is already in the free list,
FreeBoardMern will Alert() (e.g. crash the system).

SEE ALSO
AllocExpansionMem, FreeExpansionMem, AllocBoardMem

BUGS

65

SYSTEM/LIBRARIES/
EXPANSION/
FREECONFIGDEV

SYSTEM/LIBRARIES/
EXPANSION/
FREEEXPANSIONMEM

NAME
FreeConfigDev — allocate a ConfigDev structure
SYNOPSIS

FreeConfigDev(configDev)
AD

FUNCTION

This routine frees a ConfigDev structure as returned by
AllocConfigDev.

INPUTS

configDev — a valid ConfigDev structure,
RESULTS

EXCEPTIONS

SEE ALSO

AllocConfigDev

BUGS

NAME
FreeExpansionMem — allocate standard device expansion memory
SYNOPSIS

FreeExpansionMem(startSlot, numSlots)
DO D1

FUNCTION

This function allocates numslots of expansion space (each slot is
E SLOTSIZE bytes). It is the inverse function of AllocExpansionMem().

INPUTS

startSlot — the slot number that was allocated, or -1 for error.
numSlots — the number of slots to be freed.

RESULTS

66

SYSTEM/LIBRARIES/
EXPANSION/
GETCURRENTBINDING

EXAMPLES

EXCEPTIONS

If the caller tries to free a slot that is aiready in the free list,
FreeExpansionMem will Alert() (e.g. crash the system).

SEE ALSO
AllocExpansionMem, AllocBoardMem, FreeBoardMem

BUGS

NAME
GetCurrentBinding — sets static board configuration area
SYNOPSIS

actual = GetCurrentBinding{ currentBinding, size)
A0 D16

FUNCTION

This function writes the contents of the “currentBinding™ structure
out of a private place. It may be set via SetCurrentBinding(). This is
really a kludge, but it is the only way to pass extra arguments to a
newly configured device. :

A CurrentBinding structure has the name of the currently loaded file,
the product string that was associated with this driver, and a pointer
to the head of a singly linked list of ConfigDev structures (linked
through the cd_NextCD field).

Many devices may not need this information; they have hard coded
into themselves their manufacture number. [t is recommended that
you at least check that you can deal with the product code in the
linked ConfigDev structures.

INPUTS

currentBinding — a pointer to a CurrentBinding structure

size — the size of the user’s binddriver structure. No more than this

much data will be copied. If size is larger than the libraries idea a
CurrentBinding size, then the structure will be null padded.

67

SYSTEM/LIBRARIES/
EXPANSION/
OBTAINCONFIGBINDING

RESULTS

actual — the true size of a CurrentBinding structure 1s returned.
EXAMPLES

EXCEPTIONS

SEE ALSO

GetCurrentBinding

BUGS

NAME

ObtainConfigBinding -— try to get permission to bind drivers
SYNOPSIS

ObtainConfigBinding()

FUNCTION

ObtainConfigBinding gives permission to bind drivers to ConfigDev
structures. It exists so two drivers at once do not try ang own the
same ConfigDev structure. This call will block until 1t is safe to pro-
ceed.

Individual drivers do not need to call this routine. It is intended for
BindDriver program, and others like it. If your drivers won't be load-
ed via the standard method, you may need to lock out others.

It is crucially important that people lock out others before loading
new drivers. Much of the data that is used to configure things is
statically kept. and others need to be kept from using it.

This call is build directly on Exec SignalSemaphore code
(e.g. ObtainSemaphore).

INPUTS

RESULTS
EXCEPTIONS

SEE ALSO
ReleaseConfigBinding

68

L3
S %
.
'
i
,
%

SYSTEM/LIBRARIES/
EXPANSION/
READEXPANSIONBYTE

BUGS

NAME

ReadExpanstonByte — read a byte nybble by nybble.

SYNOPSIS

byte = ReadExpansionByte(board. offset |
D0 AO DO
FUNCTION

ReadExpansionByte reads a byte from a new-style expansion board.
These boards have their readable data organized as a series of
nybbles in memory. This routine reads two nybbles and returns the
byte value.

In general, this routine will only be called by ReadExpansionRom.
The offset is a byte offset into a ExpansionRom structure. The actual
memory address read will be four times larger. The macras
EROFFSET and ECOFFSET are provided to help get these offsets
from C.

INPUTS

board — a pointer to the base of a new style expansion board. offset
-— a logical offset from the board base

RESULTS

byte — a byte of data from the expansion board, or -1 1f there was
an error reading from the board.

EXAMPLES

byte = ReadExpansionByte(cd->BoardAddr, EROFFSET(er_Type)
). ints = ReadExpansionByte(cd->BoardAddr. ECOFFSET

{ ec_Interrupt)):

EXCEPTIONS

SEE ALSO

WriteExpansionByte. ReadExpansionRom

BUGS

69

SYSTEM/LIBRARIES/
EXPANSION/
READEXPANSIONROM

NAME

ReadExpansionRom — read a board's configuration ROM space

SYNOPSIS

error = ReadExpansionRom(board, configDev)
DO A A
FUNCTION

ReadExpansionRom reads a the ROM portion of an expansion device
in to cd_Rom portion of a ConfigDev structure. This routine knows
how to detect whether or not there is actually a board there,

In addition, the Rom portion of a new style expansion board is en-
coded in ones-complement format {except for the first two nybbles
— the er_Type field). ReadExpansionRom knows about this and un-
complemnents the appropriate fields.

INPUTS

board — a pointer to the base of a new style expansion board.
configDev — the ConfigDev structure that will be read in.
offset — a logical offset from the configdev base

RESULTS

error — If the board address does not contain a valid new style ex-
pansion board, then error will be non-zero.

EXAMPLES

configDev = AllocConfigDev();
if(! configDev) panic();

error = ReadExpansionBoard(board, configDev);
if(Lerror) [

configDev->>cd_BoardAddr = board;
ConfigBoard(configDev);

]
EXCEPTIONS

SEE ALSO
ReadExpansionByte, WriteExpansionByte
BUGS

70

p—

SYSTEM/LIBRARIES/
EXPANSION/RELEASE
CONFIGBINDING

SYSTEM/LIBRARIES/
EXPANSION/
REMCONFIGDEV

NAME

ReleaseConfigBinding — allow others to bind to drivers
SYNOPSIS

ReleaseConfigBinding()

FUNCTION

This call should be used when you are done binding drivers to
ConfigDev entries. It releases the SignalSemaphore; this allows
others to bind their drivers to ConfigDev structures.

INPUTS

RESULTS

EXAMPLES

EXCEPTIONS

SEE ALSO

ObtainCenfigBinding

BUGS

NAME

RemConfigDev — remove a ConfigDev structure from the system
SYNOPSIS

RemConfigDev(configDev)
AQ

FUNCTION

This routine removes the specified ConfigDev structure from the list
of Configuration Devices in the system.

INPUTS

configDev — a valid ConfigDev structure.

RESULTS

71

SYSTEM/LIBRARIES/
EXPANSION/
SETCURRENTBINDING

EXCEPTIONS
SEE ALSO
AddConfigDev

BUGS

NAME
setCurrentBinding — sets static board configuration area
SYNOPSIS

SetCurrentBinding(currentBinding. size)
AO DO:16

FUNCTION

Thus function records the contents of the “cu rrentBinding” structure
in a private place. It may be read via GetCurrentBinding(). This is
really a kludge. but it is the only way to pass extra arguments to a
newly configured device.

A CurrentBinding structure has the name of the currently loaded file,
the product string that was associated with this driver, and a pointer
to the head of a singly linked list of ConfigDev structures (linked
through the cd_NextCD field).

Many devices may not need this information: they have hard coded
into themselves their manufacture number. It is recommended that
you at least check that you can deal with the product code in the
linked ConfigDev structures.

INPUTS

currentBinding — a pointer to a CurrentBinding structure

size — the size of the user's binddriver structure. No more than this
much data will be copied. If size is larger than the library’s ideal
CurrentBinding size, then the structure will be null padded.
RESULTS

EXAMPLES

EXCEPTIONS

72

SYSTEM/LIBRARIES/
EXPANSION/
WRITEEXPANSIONBYTE

SEE ALSO
GetCurrentBinding

BUGS

NAME

WriteExpansionByte — write a byte nybble by nybble.

SYNOPSIS

error = WriteExpansionByte(board. offset. byte)
DO A0 DO DI
FUNCTION

WriteExpansionByte write a byte to a new-style expansion board.
These boards have their writeable data organized as a series of nyb-
bles in memory. This routine writes two nybbles in a very carefull
manner {0 work with all types of new expansion boards.

To make certain types of board less expensive, an expansion board's
write registers may be organized as either a byte-wide or nybble-
wide register. {f it is nybble-wide then it must latch the less signifi-
cant nybble until the more significant nybble s written. This allows
the following algorithm to work with either type of board:
write the low order nybbie to bits D15-D12 of byte (offset*4) + 2
write the entire byte to bits D15-D8 of byte (offset*4)
The offset is a byte offset into a ExpansionRom structure. The actual
memory address read will be four times larger. The macros EROFF-
SET and ECOFFSET are provided to help get these offsets from C.
INPUTS
board — a pointer to the base of a new style expansion board.
offset — a logical offset from the configdev base
byte — the byte of data to be written to the expansion board.
RESULTS

error — the routine will return a zero on success. non-zero if there
was a problem.

73

EXAMPLES

err = WriteExpansionByte(cd->BoardAddr, ECOFFSET
(ec. Shutup), 0);

err = WriteExpansionByte(cd->BoardAddr, ECOFFSET
{ ec_Interrupt), 1):

EXCEPTIONS

SEE ALSO

ReadExpansionByte, ReadExpansionRom

BUGS

74

Section 3.4

100 Pin Expansion Signals on Amiga Computers

INTRODUCTION

Changes from Previous
Documents

Definition of Terms

This section details the signals found on the 100 pin standard Amiga
expansion connector. The main point of this document is to discuss
the signals found on the B200O computer and how these differ from
the similar signals found on A2000 computers and those of the
original Zorro specification and A1000 computers. Anytime some-
thing is specified for the A2000, it is also true for the B2000 unless
otherwise stated.

We've attempted to keep the Expansion Bus pin specification as
much the same as possible from machine to machine. However, es-
pecially concerning the changes from the original specification to the
A2000 specifications, there were indeed some major changes made.
Although these changes will affect relatively few boards, they're non-
trivial for the boards that they do affect. In this case, we basically
chose to sacrifice a small fraction of our compatibility for a reason-
ably large increase in the power of the Expansion Bus. If possible,
add-on boards should be designed for the Expansion Bus. While the
86 pin slot is similar to the A1000 86 pin edge connector, it is in-
tended for add-on processors, such as 68020 boards. Hard disk,
memory, peripheral boards, etc. should work just fine in 100 pin ex-
pansion slots; the differences should only affect some coprocessor/
turbo boards. Also note that the autocanfiguration should be done in
the 100 pin slots.

Most of the Expansion Bus signals are buffered (the ZORRO detail
will of course depend on the design; the characteristics assumed here
will be present if the Commodore-Amiga design specifications are
followed). This is an important point to keep in mind, for buffered
signals should be specifically considered in any timing analysis, while
unbuffered signals should be considered specifically in any loading
analysis. Buffered signals are typically either inputs or some synchro-
nous bidirectionals; outputs and asynchronous bidirectionals can't
easily be buffered.

Several terms are used in the following text, and an understanding of
them is required to speak proper Amiga-ese. A PIC, or Plug In Card,
is a device that plugs into an expansion slot and follows the auto-con-
figuration protocol. Nothing should plug into a 100 pin slot that
doesn't follow this protocol. The term siot refers to a physical plug-
in location, either the Coprocessor Siot or one of the five available
Expansion Slots. The terms 100 Pin Slot and Expansion Slot are con-
sidered synonyms, and describe one of the five 100 pin Expansion
Slots. The Expansion Bus is the processor bus that is in common be-

75

POWER CONNECTIONS

Digital Ground (Ground)

Main Supply (+ 5V)

Negative Supply (—5V)

tween all Expansion Slots. The terms 86 Pin Slot, Coprocessor Slot,
and Local Slot are considered synonyms, and pertain to the 86 pin
Coprocessor Slot in the A2000 and B2000. The terms 86 Pin Edge
and Expansion Edge are considered synonyms, and pertain to'the 86
pin Expansion Edge in the A1000 and AS00. The Locaf Bus is the
processor bus directly connected to the 68000 processor and the
Coprocessor Slot or Expansion Edge; both the Coprocessor Slot and
Expansion Edge are considered Local Bus Ports. Each different im-
plementation of a hardware design is termed an /nstance of that de-
sign; thus, the A2000°s Expansion Bus, the B2000's Expansion Bus,
and all third party ZORRO backplanes for the A1000 or AS00 are in-
stances of the Expansion Bus.

Along with an understanding of Amiga bus terms, a familiarity with
Matorola’s 68000 processor and its characteristic names and related
terms will also be very useful in understanding this section.

The Expansion Bus provides several different voltages designed to
supply expansion devices. The A2000 power supply is a “switching”
power supply. currently rated at 200 watts. which supplies the main
board and all other expansion ports, as well as the Expansion Bus.

Digital supply ground used by all expansion cards as the return path
for all expansion supplies. This is found on all instances of the Expan-
sion Bus. See the Table at the end of this section for pin assignments.

Main power suppiy for all expansion cards, and is capable of sourcing
large currents; each Expansion Slot can draw up to 2.0 Amps of +5,
and a single Slot can draw as much as 4 Amps if necessary, for de-
vices such as 8 megabyte RAM cards. The maximum supply current
for the entire A2000 system is 20 Amps on the + 5 supply. All ports
open to the outside of the box have their own. separate + 5V supply
that’s short protected, thus no loads external to the A2000 box need
be considered. This supply is found on al! instances of the Expansion
Bus, though the available currents may vary. Pins: 5, 6.

Negative version of the main supply. for small current loads only;
there’s a total of 0.3 Amp for the entire A2000 systern. Found on all
instances of the Expansion Bus, though the available currents may
vary. Pin: 8.

76

23 3B B E B BR B BEBRBB

High Voltage Supply
(+12V)

Negative High Supply
(—12V)

CLOCK SIGNALS

/C1 Clock

/C3 Clock

CDAC Clock

E Clock

Higher voltage supply, useful for communications cards and other
devices requiring greater than digital voltage levels. This is intended
for small loading only: there’s a total of 8 Amps for the entire A2000
system, much of which is normally devoted to floppy and hard disk
drive motors. Found on all instances of the Expansion Bus, though
the available currents may vary. Pin: 10.

Negative version of the high voitage supply. aiso commonly used in
communications applications, and similarly intended for small loads
only; there is a total of 0.3 Amp for the entire A2000 system. This
pin is an extension of the original Zorro specification, and is found in
all A2000 machines. Pin: 20.

The Expansion Bus provides clock signals for expansion boards. They
are generally used to allow clocked logic to be used in designs instead
of delay lines. See p. 39 for bus loading specs.

This is a 3.58 MHz clock synched to the falling edge of the 7.16 MHz
system clock. Also known as /CCK in some places. Pin 16.

This is a 3.58 MHz clock synched to the rising edge of the 7.16 MHz
system clock. Also known as /CCKQ in some places. Pin 14.

This is a 7.16 MHz clock that leads the 7.16 MHz system clock by
70ns (90 degrees). Pin 15.

This is the 68000 generated “E™ clock. used for 6800 family peri-
pherals driven by “E” and 6502 peripherals driven by PHIZ. This
clock is six 7.16 MHz clocks high, four clocks low, as per the 68000
spec. Pin 50.

77

TMHLZ Clock

ADDRESSING AND
CONTROL SIGNALS

Read Enable (READ)

Address Bus {A1-A23)

Address Strobe (/AS)

Data Bus (D0-D15)

This is the 7.16 MHz system clock. On A2000/B2000 design has
true 7MHz which is actually in commoen with the 68000's 7MHz in-
put. On the original ZORRO bus specification this was the EQU7MHz
signal, a 7M equivalent made using the relationship EQU7MHz =
/C1 XNOR /C3. Because of this, there may be some timing differ-
ences in this signal among different vendors of ZORRO expansion
boards and between these ZORRO boards and the A2000/B2000
system. It is possible to create an EQU7MHz clock on a ZORRO
board that is nearly identical to the internal version, as on an A2000
the signal is created using exactly this aforementioned relationship.
Pin 92.

These signals are various itemns used for the addressing of devices on
the bus by the 68000 and any DMA devices. Most of these signals
are buffered versions of similar 68000 signals, and are bidirectional-
ly buffered to allow any DMA device on the bus to drive the 68000
local bus when such a device is a bus master.

Read enable for the bus, which is a buffered version of the 68000's
R/W output. Read asserted indicates a read or internal cycle, read ne-
gated indicates a write cycle. Pin 68.

This is a buffered version of the 68000's address bus, providing 16
megabytes of address space, though only 8 megabytes of this ad-
dress space is available to expansion bus devices. Expansion boards
should only respond to address ranges assigned them during con-
figuration; otherwise. addressing conflicts between multiple boards
will arise. See Appendix for pin list.

The falling edge of this strobe indicates that addresses are valid, the
rising edge signals the end of an Expansion Bus memory cycle. This is
a buffered version of the 68000 /AS signal. Found on pin 74.

This is a buffered version of the 68000’s data bus, providing 16 bits
of data accessible by word or either byte. Note that the data bus is
enabled by /AS asserted, so the data bus is not expected to have any
significant hold time beyond /AS negated. so during write cycles in
most design applications /AS should not be used to latch data. During
read cycles, the enabling of the data bus is delayed to give the colli-
sion detection circuitry time to detect any collisions before data is en-
abled, thus avoiding any fights among the data drivers of multiple
PICs. See Appendix for pin list,

78

e

Data Strobes {/LDS,
/UDS)

Valid Memory Address
(VMA)

Valid Peripheral Address
(/VPA)

Data Transfer
Acknowledge (/DTACK)

Processor Status
(FCO-FCZ2)

These are buffered versions of the 68000's upper and lower data
strobes. The strobes fali on data valid during transfer; the lower
strobe being used for the lower byte (even byte address), the upper
strobe being used for the upper byte (odd byte address). These are
considered by the data bus buffers during read cycles, in case the cy-
cle actually turns out to be a read-modify-write cycle. They're ig-
nored during write cycles, since they can become valid quite late in
the cycle, and a late enable would require unnecessarily fast data
handling in certain PIC applications. Pins: 70, 72.

Unbuffered output from the 68000 indicating a valid address for
6800 style peripheral devices, in response to a /VPA input. Pin 31.

Unbuffered input to the 68000 indicating the address has selected a
6800 or 6502 style peripheral, so the 6800 style peripherai access
should take place. Pin 48.

This signal is logically associated with the 68000's Data Transfer Ac-
knowledge input. Normally in the Amiga system, Amiga system logic
creates /DTACK for a simple, no-wait state cycle {this may be varied
by the custom chips). Therefore, this signal is treated as an output to
the Expansion and Coprocessor Siots, for most situations. Any slow
device on the bus that needs to control /DTACK may do so by negat-
ing XRDY to hold off /DTACK or asserting /OVR very quickly to tri-
state /DTACK. Note that depending upon when /AS is asserted by a
bus master when accessing the CHIP memory, one of two possible
cycles may result. If /AS is asserted during C1 low, C3 low, the bus
cycle is considered “in-sync.” and will proceed, with /DTACK driven
as for a normal, 4 tick clock cycle. If, instead, /AS is asserted during
C1 high. C3 high, the bus cycle is considered “out of sync” and the
internally generated /DTACK will be held off, causing a wait state
that's designed to “sync-up” the DMA cycle with the custom chip’s
memory cycle. This signal is on pin 66.

These signals are the buffered versions of the 68000 Processor Sta-
tus outputs, which can be used by bus devices to determine the inter-
nal state of the 68000 any time /AS is asserted. Pins 31, 33, 35.

79

Bus Error (/BERR)

System Reset (/RST,
/BUSRST)

Systemn Halt (/HLT)

Systemn Interrupts

This 1s an input that goes directly to the 68000. It is used to indicate
the occurrence of some kind of bus error. Any expansion card capa-
ble of detecting a bus error relating directly to that card can assert
/BERR when that bus error condition is detected. At other tirhes, the
card must monitor /BERR and be prepared to tri-state all of its on-
bus output buffers whenever this signal is asserted. Since any num-
ber of devices may assert /BERR, and all bus cards must monitor it,
any device that drives /BERR must drive with an open cotlector or
similar device capable of sinking at least 12ma, and any device that
monitors /BERR should place as little load on it as possible (1 “F"
type load or less, per board. is suggested). This signal is connected to
a low valued on-board pullup resistor, and shouldn't need any more
pulling up. Pin 46.

Pin 53 of the bus contains the /RST signal. pin 94 contains the
/BUSRST signal. Both of these reflect system reset, however, the
/RST signal is bidirectional, unbuffered, and in common with the
original 68000 reset signal. It shouid only be used on boards that are
capable of resetting the system. The /BUSRST signal is a buffered
output-only version of the reset signal that should be used as the
normal reset input to boards not concerned with resetting the sys-
tem on their own. The /RST signal is connected to a medium valued
on-board pullup resistor and shouldn’t need any more pulling up.

This is the 68000's processor halt signal, tied directly to the 68000.
It is connected to a medium valued on-board pullup resistor and
shouldn’t need any more puiling up. This signal, when driven by a
PIC. will hait and tri-state the 68000 at the end of the current bus
cycle. If driven by the 68000, it indicates detection of a double bus
fault. Pin 55.

Six of the 68000 interrupts are available on the Expansion Bus, and
these are labeiled as /INTZ, /INT6, /EINT1, /EINT4, /EINTS, /EINT7.
The interrupt structure of the original ZORRO specification has been
slightly changed for the A2000/B2000. This change affects the avail-
ability of decoded interrupt inputs and multiplexed interrupt inputs.
Specifically, the 68000 accepts 7 levels of interrupt that are present-
ed to it as 8 possible values priority encoded into 3 multiplexed in-
puts. The original ZORRO specification called for decoded interrupt
inputs on pin 19 for interrupt level 2 (/INT2), and on pin 22 for in-
terrupt level 6 (/INT6). These are the same interrupts used by the
Amiga internal system chips and encoded by the Paula chip. The in-
terrupts could be used by external devices by wired ORing interrupt
requests into one of these available interrupts. The original ZORRO

80

Override (/OVR)

External Ready (XRDY)

bus also provides the encoded interrupt lines /IPLO, /[PL1, and /IPL2
on bus pins 40, 42, and 44 respectively. These are useless as inputs,
but as outputs are required by any Coprocessor or alternate proces-
sor that needs to monitor system interrupts. In the A2000/82000
scheme, coprocessors sit in the Coprocessor Slot which allows them
full control of the system. The encoded interrupt lines have been re-
placed with decoded interrupt lines that may be freely used as inputs;
interrupt levels 7 (/EINT7), 5 (/EINTS), and 4 (/EINT4) are available
now on bus pins 40, 42, and 44 respectively. and the level 1 inter-
rupt (/EINT1) is available on bus pin 96 (which is left open in the
ZORRO specification). See Appendix for pin list.

The /OVR. or Override, signal is a special Amiga expansion signal that
can serve two purposes. The signal can basicaily turn off the on-
board decoding of system memory ranges. including those used by
the Amiga custom chips. As a result of this, it can also turn off inter-
nally generated things. like /DTACK.

The timing in the AS00 and B200O, based on the Gary chip (not the
PALs of the older machines) effectively prohibits the use of OVR+ for
the area outside of $200000 to $S9FFFFF. Due to the buffering de-
lays of the Expansion Bus. this signal should never be used for over-
lay on a PiC.

The other use of this signal is better supported. Asserting /OVR will
tri-state the internally generated /DTACK signal. allowing a Co-
processor or Expansion device to create its own /DTACK. The same
effect can be achieved for most applications by using XRDY to delay
the motherboard's generation of /DTACK. Pin 17.

This input provides a way for an external device to delay the mother-
board generated /DTACK, for things like slow memory and /O
boards that need to add wait states. This signal should be negated
very quickly, no later than 60ns from address valid (/AS asserted). in
order for the motherboard circuitry to have enough time to prevent
the normal assertion of /DTACK. XDRY should stay negated for as
many wait states are required. Once XRDY is asserted, /DTACK com-
pletes the rest of the normal cycle. XRDY is a wired-OR input; it is
pulled up by a resistor on the motherboard, and should be driven
with an open collector or equivalent ocutput. Pin 18.

81

SLOT CONTROL
SIGNALS

Slave (/SLAVEn)

Configuration Chain
(/CFGINn, /CFGOUTn)

Data Output Enable
(DOE)

DMA CONTROL SIGNALS

This group of signals is responsible for the control of things that
happen between Expansion Slots.

Pin 9 is the SLAVER signal, where “n” refers to the Expansion Slot
number. Each Slot has its own SLAVE output, all of which go into the
collision detect circuitry. Whenever a PIC is responding to a decoded
address range, it must assert its SLAVE output within 35 ns. The
SLAVE output must be negated at the end of a cycle within 50 ns. If a
more than one SLAVE output occurs for the same address, or if a PIC
asserts its SLAVE output for an address reserved by the local bus, a
collision is registered and resuits in /BERR being asserted.

Pins 11 and 12 are, respectively, the /CFGOUTn and /CFGINR signals,
where “n” refers to the Expansicn Slot number. Each Slot has its
own version of each signal, which make up the configuration chain
between Slots. Each subsequent /CFGIN is a result of all previous
/CFGOUTS, going from slot 1 to slot 5 on the Expansion Bus. On the
B2000, the 86 pin coprocessor has CONFIG priority 0, which chains
directly into Expansion Slot 1. This enforces the order of autoconfi-
guration between slots. During the autoconfiguration process, an un-
configured PIC responds to the 64K address space starting at
$E80000 if its CFGIN signal is asserted. All unconfigured PICs come
up with CFGOUT negated. When configured, or told to "shut up™, a
PIC will assert is CFGOUT, which results in the CFGIN of the next slot
to be asserted. On-board logic automatically passes on the state of
the previous CFGOUT to the next CFGIN for any slot not occupied by
a PIC, so there’s no need to sequentially popuiate the Expansion Bus
Slots.

This signal is used by an expansion card to enable the buffers on the
data bus. The signal’s timing changes from read cycle to write cycle.
Pin 93.

There are various signals on the Expansicn Bus that coordinate the
arbitration of DMAs that may be requested by devices on the Expan-
sion Bus,

82

PIC is DMA Owner
(/OWN)

Slot Specific Bus
Arbitration (/BRn, /BGn)

Bus Grant Acknowledge
(/BGACK)

Processor Bus Grant
(/BG, /GBG)

RESERVED PINS

Asserted by Expansion Bus DMA device when it becomes bus rmaster.
This output is to be treated as a wired-OR output between all Expan-
sion Slots, any of which may have a PIC signalling bus mastership.
Thus, this should be driven with an open-collector or similar output
by any PIC using it. Found on pin 7.

Pins 60 and 64 are, respectively, the /BRn and /BGn signals, where
“n” refers to the Expansion Slot number. Each Slot has its own ver-
sion of each signal. The Bus Request and Bus Grant from each board
go to some prioritization circuitry, and then to the 68000. Slot 1 has
the highest priority. Slot 5 the lowest, out of the Expansion Slots. On
a B2000, the Coprocessor Slot is included in this priority chain when
its not acting as a coprocessor, and it acts as priority level 0, right be-
fore that of slot 1. Note that along with the request prioritization
fogic, the bus requests are clocked by the rising edge of the 7M clock,
and its a very good idea for any PIC requesting the bus to similarly
clock its Bus Request output. This design prohibits any astable or
race conditions that can occur when two PICs desire to own the bus
asynchronously. Found on pins 60, 64, respectively.

This is the unbuffered 68000 /BGACK signal. Any PIC that receives a
bus grant from the 68000 should assert this signal as long as the
DMA continues, releasing it once the DMA request is finished. This
signal should never be asserted until the Bus Grant has been re-
ceived, AS is negated, DTACK is negated, and BGACK itself is negat-
ed, indicating that all other potential bus masters have relinquished
the bus. This output is driven as a wired-OR output, so all devices
driving it must drive it with an open coilector or equivalent device.
Pin 62.

The A1000 and A2000 systems receive the the /BG (bus grant) sig-
nal from the 68000 directly, unchanged, in addition to the slot spe-
cific /BGn signals. This was actually a late change to the original
ZORRO specification, so it may not be on every A1000 ZORRO ex-
pansion box. This has changed slightly on the B200O system as part
of the coprocessor interface, The B2000’s bus pin 95 is /GBG, Ge-
neric Bus Grant. When the 68000 is in charge, /GBG is essentially a
buffered /BG. When the coprocessor is in charge, /GBG is a buffered
/CBG. This allows all cards in the expansion bus to function without
concern as to which processor is actually controlling the bus.

Pins 96. 97, and 98 have been left open for future expansion.

83

100 PIN CONNECTOR There are three instances of the Expansion Bus (so far}, the original

PINOUTS A1000/ZORRO specification, and the A2000 enhancement to this
original spec, and the B2000 (A2000-CR) specification. The ZORRO
specification is treated as a single instance for the purposes of this
chart, even though there are several different ZORRO bus implemen-
tations from several different hardware manufacturers.

PIN ZORRO A2000 B2000 Buffered? Function

1 X X X N/A Ground
pa X X X N/A Ground
3 X X X N/A Ground
4 X X X N/A Ground
5 X X X N/A +5vVDC
6 X X X N/A +5vDC
7 X X X N/A /OWN
8 X X X N/A -5VDC
9 X X X N/A /SLAVEn
10 X X X N/A + 12VDC
11 X X X N/A /CFGOUTn
12 X X X N/A /CFGINn
13 x X X N/A Ground
14 X X X Yes /C3 Clock
15 X X X Yes CDAC Clock
16 X X X Yes /C1 Clock
17 X X X No /OVR
18 X X X No XRDY
19 X X X No /INT2
20 X N/A No Connect
X X N/A -12vDC
21 X X X Yes AS
22 X X X No /ANTE
23 X X X Yes AB
24 X X X Yes A4
25 X X X N/A Ground
26 X X X Yes A3
27 X X X Yes A2
28 X X X Yes A7
29 X X X Yes Al
30 X X X Yes A8
31 X X X Yes FCO
32 X X X Yes A9
33 X X X Yes FC1
34 X X X Yes A10
35 X X X Yes FC2
36 X X X Yes Al
37 X X X N/A Ground
38 X X X Yes At2
39 X X X Yes Al13
40 X No /IPLO
X X No /EINT7

PIN ZORRQO A2000 B2000 Buffered? Function

41 X X X Yes Al4
42 X X Yes APL
- X X Yes /EINTS
43 X X X Yes Al5
44 X X No /IPL2
X X No /EINT4
45 X X X Yes Al6
46 X X X No /BEER
47 X X X Yes Al7
48 X X X No NPA
49 X X X N/A Ground
50 X X X No E Clock
51 X X X N/A NMA
52 X X X Yes A18
53 X X X No /RST
54 X x X Yes Al19
55 X X X No (HLT
56 X X X Yes A20
57 X X X Yes AZ2
58 X X X Yes AZ 1
P 59 X X X Yes AZ3
60 X X X N/A /BRn
. 61 X X X N/A Ground
P 62 X X X No /BGACK
63 X X X Yes D15
64 X X X N/A /BGn
I 65 X X X Yes D14
66 X X X No /DTACK
&7 X X X Yes D13
68 X X X Yes READ
69 x X X Yes D12
70 X X X Yes /LDS
71 X X X Yes D11
72 X X X Yes /UDS
73 X X X N/A Ground
74 X X X Yes /AS
75 X X X Yes DO
76 X X X Yes D10
77 X X X Yes M
78 X X X Yes D9
79 X X X Yes D2
L 80 X X X Yes D8
81 X X X Yes D3
82 X X X Yes b7
" 83 X X X Yes D4
' 84 X X X Yes D6
85 X X X N/A Ground
86 X X X Yes DS
= 87 X X X N/A Ground
88 X X X N/A Ground

85

PIN
89
80
91
92

93
94
95

96

97
98
99
100

ZORRO A2000

> X Pagie o g

i g e 4

P b IS =

o i g

B2000 Buffered?

P g > P 4 >R

N/A
N/A
N/A
N/A
No
N/A
Yes
No
Yes
N/A
No
N/A
N/A
N/A
N/A

Function
Ground
Ground
Ground
EQU7MHz
7MHz

DOE
/BUSRST
/BG

/GBG

No Connect
/EINT1

No Connect
No Connect
Ground
Ground

Coprocessor Expansion and 86 Pin Signals

INTRODUCTION

Changes from Previous
Documents

This section details the signals found on the various types of 86 pin
expansion connectors on different Amiga computers, especially the
signals found on the B2000 computer’s 86 pin Coprocessor Slot, and
how these differ from the similar signals found on A2000 computers
and those of the original A1000 computers. This paper also explains
the Coprocessor Slot's autoconfiguration and DMA protocols and
how they fix the problems introduced in the AZ000 Coprocessor
Slot.

We've kept the 86 pin specification on the B200O0 as similar to those
available on the A2000, A1000 and AS00, wherever possible. How-
ever, some major changes were absolutely required. With the design
of the A2000, the function of the 86 pin slot had shifted from a gen-
eral expansion connector to expansion specifically intended for co-
processors and similar devices. Thus, while the A500s and A1000's
86 pin connectors have to support both some kind of coprocessor
expansion and the normal ZORRO expansion, the A2000 machines
can optimize each slot for its purpose if required (or if necessary,
which is more the case).

The 86 pin connector on the A500 and A1000 becomes something
of an advantage, because of the fact that all expansion must be done
externally. When a coprocessor device, something that needs to com-
pletely replace the 68000 in all forms of bus access and operation
(like a 68020 accelerator card) is added, it can physically sit between
the computer motherboard and the 100 pin expansion box, thus al-
lowing the device to completely replace the action of the mother-
board's processor from the point of view of the expansion box. A
machine with both slots on the motherboard must provide some fa-
cility to logically insert the 86 pin slot in front of the 100 pin slot for
certain applications.

In the A2000, the Coprocessor Slot signals that control DMA can be
used to insert the coprocessor in the place of the normal 68000 via
the standard 68000 DMA request protocol. This, however, isn't a to-
tally transparent replacement; the action of the coprocessor taking
control over the local bus from the 68000, in the A2000, can block
other DMA events coming over from the 100 Expansion Bus. For to-
tal control of the Expansion Bus on the A2000, the 68000 could be
physically removed from the motherboard, but that would resuit in
the “coprocessor’” being a complete “replacement” processor, with
no swapping between the two permissible. The B200O solves these
problems with a higher-level DMA protocol between the main and
coprocessor devices. _

87

COPROCESSOR SLOT
SIGNALS

POWER CONNECTIONS

Digital Ground (Ground)

Main Supply (+ 5V)

Negative Supply (—5V)

High Voltage Supply
(+12V)

The Coprocessor Slot signais discussed below apply for most of the
machines, though in some cases the item mentioned exists on only
some of the machines; these are specified. Most of these signals are
directly in common with the 68000. or directly a part of the 68000
local bus, instead of being buffered as on the Expansion Bus. No sig-
nal on a Coprocessor card should load the Local Bus with more than
one “F" series standard load.

The Coprocessor Slot provides several different voltages designed to
supply Coprocessor devices. The A2000 power supply is currently
rated at 200 Watts, which supplies the main board and all other ex-
panston ports, as well as the Coprocessor Slot.

Digital supply ground used by all expansion cards as the return path
for all expansion supplies. This is found on all instances of the Local
Bus ports. See p. 98 for pin assignments.

Main power supply the Coprocessor slot, and can supply up to 2.0
Amps of +5VDC on the A2000. The maximum supply current for
the entire A2000 system is 20 Amps for all devices inside the A2000
that use + 5V, including the motherboard. The corresponding pins
on the Expansion Edge of the A1000 can source anly 1 Amp, and
even less on the AS00. Pins: 5. 6.

Negative version of the main supply. for small current loads only:
there’s a total of 0.3 Amp for the entire AZ000 systemn.

This pin is similar to what’s avaitable on the A1000 and AS00.
though these other instances will have different currents available.
Pin: 8.

Higher voltage supply, useful for communications cards and other
devices requiring greater than digital voltage levels. This is intended
for small loading only; there’s a total of 8 Amps for the entire A2000
system, much of which is normally devoted to floppy and hard disk
drive motors. Found on all instances of Local Bus Ports, though the
available currents may vary. Pin: 10,

88

CLOCK SIGNALS

/C1 Clock

/C3 Clock

CDAC Clock

E Clock

TMHz Clock

28MHz Clock

There are various system clocks available at all Local Bus Ports, use-
ful in designing synchronous Coprocessor systems. Loading on these
clocks should be watched very carefully on all types of Amiga com-
puters.

This is a 3.58 MHz clock synched to the falling edge of the 7.16 MHz
system clock. Also known as /CCK in some places. Pin 16.

This is a 3.58 MHz clock synched to the rising edge of the 7.16 MHz
system clock. Also known as /CCKQ} in some places. Pin 14.

This is a 7.16 MHz clock that leads the 7.16 MHz system clock by
about 70ns (90 degrees). Pin 15.

This is the 68000 generated “E” clock, used for 6800 family peri-
pherals driven by “E™ and 6502 peripherals driven by PHi2. This
clock is six 7.16 MHz clocks high, four ciocks low, as per the 68000
spec. This clock is always generated by the 68000. regardless of the
state of the bus and the Coprocessor; this fact should be considered
by the Coprocessor implementor when designing any Coprocessor
NMA logic. Pin 50.

This is the 7.16 MHz system clock. This is available only on the
B2000 at this pin, and is in common with the 68000’s clock input.
This pin. pin 7. is unused on all other Local Bus Port instances. Many
applications that run on systems without the 7MHz clock create a
7MHz equivalent clock, using the relationship 7MHzEQU = /C1
XNOR /C3; care must be taken in considering any additional delays
that this equivalent clock causes on systems other that the B2000O.

This is the 28.64 MHz fundamental clock used to derive all other
system clocks under normal operation. There's no guaranteed phase
relationship between this clock and the system clocks. When the sys-
tem is being driven by an external clock source via XCLK and
/XCLKEN. this clock will essentially be completely asynchronous to
the system clocks. It is provided mainly to provide a fast clock for
fast coprocessors. This is pin 9 on the Coprocessor Slot, and is an un-
used pin on the Expansion Edge of the ASO0 and A1000.

89

ADDRESSING AND
CONTROL SIGNALS

Read-Write (R/W)

Address Bus (A1-A23)

Address Strobe (/AS)

Data Bus (D0O-D15)

These signals are various items used for the addressing of resources
on a coprocessor card by the 68000 and any DMA devices, and for
24 by 16 bit addressing of other system resources by a coprocessor
device (which may easily have more potential). Most of these signals
are directly in commoen with 68000 signals.

The 68000's R/W output. When driven high it indicates a read or in-
ternal cycle, when driven low it indicates a write cycle. When the co-
processor takes over it drives this line; the 68000’s output will tri-
state. Pin 68.

This directly connects to the 68000's address bus, providing 16 me-
gabytes of address space with 23 bits of address for a 16 bit data
bus. The 68000 is capable of driving only this much address space.
Thus, any resources on a coprocessor board must map somewhere
into the 68000 memaory space. The best thing to do with any such
memory is allow it to be autoconfigured by the 1.2 OS: this will place
it somewnhere in the 8 megabyte space starting at 5200000 (the
A2000 doesn’t support autoconfiguration from the Coprocessor
Slot, the B2000 does). Any resources intended specifically for the co-
processor only can be located above the 68000's 16 megabyte space
if the coprocessor hardware permits that extended addressing. All
board and Expansion bus resources will normally map into the first
16 megabytes of the address space of a coprocessor board. See

p. 88 for pin list.

The falling edge of this strobe indicates that addresses are valid, the
rising edge signals the end of the memory cycle. This is in commen
with the 68000 /AS signal. The coprocessor drives this signal when it
takes over; the 68000's will tri-state. Found on pin 74.

This is directly connected to the 68000's data bus, providing 16 bits
of data accessible by word or either byte. Any coprocessor handling
words larger than 16 bits must either step down to 16 bits on its
own or provide circuitry to convert the 16 bit word size of the main
board and Expansion Bus to the natural size of such a coprocessor,
when accessing main board resources. See p. 98 for pin ist.

90

Data Strobes (/LDS,
fUDS)

Valid Memory Address
('VMA)

Valid Peripheral Address
(VPA)

- Data Transfer
Acknowledge (/DTACK)

These are the 68000's upper and lower data strobes. The strobes
fall on data valid during transfer: the lower strobe being used for the
lower byte (even byte address). the upper strobe being used for the
upper byte (odd byte address). Like /AS, these must be driven by the
Coprocessor as it assumes control, as the 68000 pins will tri-state.
Pins: 70, 72.

Output from the 68000 indicating a valid address for 6800 style pe-
ripheral devices, in response to a /VPA input. This output goes tri-
state when the Coprocessor takes over from the 68000, and as such
must be re-created by the coprocessor in response to a VPA signal
from somewhere on the motherboard. Pin 51.

Input to the 68000 indicating the address has selected a 6800 or
6502 style peripheral, so the 6800 style peripheral access should
take place. When the 68000 has given up the bus to the Coproces-
sor, this input is ignored and must be handled by the Coprocessor
board. Pin 48.

This signal is the 68000’s Data Transfer Acknowledge input, though
it's being driven on the motherboard under most conditions. Nor-
mally in the Amiga system, Amiga system logic creates /DTACK for a
simple, no-wait state cycle (this may be varied by the custom chips).
Therefore, this signal is treated as an output to the Expansion and
Coprocessor Slots, for most situations. Any slow device on the bus
that needs to contro] /DTACK may do so by negating XRDY to hold
off /DTACK or asserting /OVR very quickly to tri-state /[DTACK. Any
coprocessor must be able to support this action by Expansion boards
as well. Note that depending upon when /AS is asserted by a bus
master when accessing the CHIP memory, one of two possible cycles
may result. If /AS is asserted during C1 low, C3 low, the bus cycle is
considered “in-sync.” and will proceed, with /DTACK driven as for a
normal 4 tick clock cycle. If instead, /AS is asserted during C1 high,
C3 high, the bus cycle is considered “out of sync” and the internally
generated /DTACK will be held off, causing a wait state that's de-
signed to “sync-up” the DMA cycle with the custom chip’s memory
cycle. Of course, when a coprocessor is accessing any of its on-board
resources, the designer can implement any reasonable data transfer
scheme that comes to mind. This signal is on pin 66.

91

Processor Status
(FCO-FC2)

Bus Error (/BERR)

System Reset (/RST)

System Halt (/HLT)

These signals are the 68000 Processor Status outputs. which can be
used by bus devices to determine the internal state of the 68000 any
time /AS is asserted. When a coprocessor is in charge, it must drive
these pins in a way compatible with how the 68000 does it. The dif-
ferent 68000 status codes can be found in any 68000 spec sheet.
Pins 31, 33, 35.

This is an input that goes directly to the 68000. Its used to indicate
the occurrence of some kind of bus error. Any Expansion Card capa-
ble of detecting a bus error relating directly to that card can assert
/BERR when that bus error condition is detected. At other times, the
card must monitor /BERR and be prepared to tri-state all of its on-
bus output buffers whenever this signal is asserted. The Coprocessor
card won't have to tri-state on /BERR. but it must note it and pro-
vide some way of handling the occurrence (the 68000 under normal
Amiga OS control merely signals a Guru Error based on the Bus Er-
ror Exception). Since any number of devices may assert /BERR, and
nearly everything in the system must monitor it. any device that
drives /BERR must drive with an open collector or similar device ca-
pabie of sinking at ieast 12ma. and any device that monitors /BERR
should place as little load on it as possibte (1 “F" type load or less,
per board, is suggested). This signal is connected to a low valued on-
board pullup resistor. and shouldn’t need any more pulling up. Pin
46.

Pin 53 of the bus contains the /RST signal which is in common with
the original 68000 reset signal. The /RST signal is bidirectional, and
the 68000 tri-states it when the coprocessor takes over. It is only
necessary for the processor to output this signal if it needs to reset
the system under program controt. The /RST signal is connected to a
medium valued on-board puliup resistor and shouldn't need any
more pulling up. The coprocessor must monitor this signal and re-
spond to it appropriately; this may mean a complete reset, but it
doesn't have to. The Coprocessor can also assert this line if a system
reset is desired.

This is the 68000's processor halt signal, tied directly to the 68000.
ft is connected to a medium valued on-board puilup resistor and
shouldn’t need any more pulling up. This signal, when asserted. will
halt and tri-state the 68000 at the end of the current bus cycle. If
driven by the 68000. it indicates detection of a double bus fault. For
a complete system reset, the 68000 looks for both the /RST and
/HLT lines to be asserted. The Coprocessor should handle this signal
in a simitar fashion. Pin 55.

92

Ea

Decoded Interrupts

Encoded Interrupts
(/1IPLO-/IPL2)

Override (/OVR)

Two of the 68000 non-encoded interrupt inputs are available at the
Coprocessor siot, on pin 19 for interrupt level 2 (/INT2) and on pin
<2 for interrupt level 6 (/INT6). These are the same interrupts used
by the Amiga internal system chips and encoded by the Paula chip.
They can be used by a Coprocessor board by driving them to gener-
ate 68000 interrupts when the 6800C is in charge, though generally
they don’t do much when the Coprocessor is in charge.

The Coprocessor Slot provides the encoded interrupt lines /IPLO,
/IPL1, and /IPL2 on bus pins 40, 42, and 44 respectively, which are
the normal encoded interrupt inputs to the 68000. Nothing on the
Coprocessor slot can drive these lines, but they must be monitored
by any Coprocessor or alternate processor that needs to be able to
respond to any system interrupts when acting as the bus master.

The /OVR, or Override, signal is a special Amiga expansion signal that
can serve two purposes. The signal can basically turn off the on-
board decoding of system memory ranges. As a result of this, it can
also turn off internally generated things, like /DTACK.

The timing in the ASO0 and B2000, based on the Gary chip (not the
PALs of the older machines) effectively prohibits the use of QVR* for
the area outside of $200000 to $9FFFFF.

The other use of this signal is better supported. Asserting /OVR will
tri-state the internally generated /DTACK signal, allowing a Co-
processor or Expansion device to create its own /DTACK. The same
effect can be achieved for most applications by using XRDY to delay
the motherboard’s generation of /DTACK. Pin 17.

93

External Ready (XRDY)

Configuration Chain
(/COPCFG)

DMA AND
COPROCESSOR SIGNALS

This input provides a way for an external device to delay the mother-
board generated /DTACK, for things like slow mernory and 1/O
boards that need to add wait states. This signal should be negated
very quickly, no later than 60ns from address valid (/AS asserted), in
order for the motherboard circuitry to have enough time to prevent
the normal assertion of /DTACK. XDRY should stay negated for as
many wait states as required. Once XRDY is asserted, /DTACK com-
pletes the rest of the normal cycle. XRDY is a wired-OR input; it is
pulled up by a resistor on the motherboard. and should be driven
with an open collector or equivalent output. Pin 18.

Pins 11 and 12 are basically the configuration iN and configuration
QUT signals. Pin 12, the configuration IN input, is grounded on all
versions of the Local Bus Ports, indicating that this Slot is the firstin
any configuration chain and may proceed with configuration. On the
AS00, A1000, and A2000, the configuration QUT signal, pin 12, is a
no-connect. Because of this, its impossible to normally autoconfigure
any device in the Coprocessor slot of an A2000. On the B20QO, pin
11 is a true configuration OUT signal, which becomes the configura-
tion IN input to the first Expansion Slot. This, the coprocessor slot is
configured first on the B2000. A note of caution here, though. All
normal Expansion Bus devices assert their /SLAVE output whenever
they respond to an address. This /SLAVE output allows the collision
detect circuitry to determine if multiple devices are respending to
the same address. When a collision is detected this way. the /BERR
signal is asserted, causing all PICs to tri-state. and saving both these
PICs and the Expansion Bus drivers from any potentially destructive
buffer fights. White the Coprocessor slot on the B200O0 can be auto-
matically configured, it can't assert a SLAVE signa) for collision de-
tect. Thus, designers must be very carefu with any autoconfiguring
resources on a Coprocessor card.

During the autoconfiguration process, first the Coprocessor card,
then all an unconfigured PICs in turn, respond to the 64K address
space starting at $E80000 as their respective CFGIN signals are as-
serted. All unconfigured PICs come up with CFGOUT negated. When
configured, or told to "shut up”, the Coprocessor Card or any PIC
should assert CFGOUT, which results in the CFGIN of the next slot to
be asserted. On-board logic autornatically passes on the state of the
previous CFGOUT to the next CFGIN for any slot not occupied by a
PIC. so there's no need to sequentially populate the Expansion Bus
Siots and no need to have the Coprocessor Card do any autoconfi-
guring if real autoconfiguration isn't necessary.

This will be covered in more detail in the next section, but this sec-
tion covers the basic signals involved in DMAs and the Coprocessor

interface.
Q4

Bus Request (/BR, /CBR) All instances of Local Expansion Ports have a Bus Request to 68000

Bus Grant (/BG, /CBG)

Bus Grant Acknowledge
(/BGACK)

Coprocessor Grant
Acknowledge (/BOSS)

of some kind. In the A2000, as in the A500 and A1000, this is direct-
ly connected to the 68000’s /BR input, which is considered a wired-
OR input; ali devices driving this input must technically drive it with
an open collector or equivalent driver. [n actuality, the AS00 and
A1000 don't use this at all internally, so a standard driver may be
used if necessary. The A2000's /BR input is shared by the /BR output
of the DMA arbitration logic, so this will be necessary on an A2000
Coprocessor Slot device. The B200O has in place of the 68000's /BR
line a special bus request all its own, /CBR. In both cases, the signal is
an input to the 68000 used to request mastership of the Local Bus.
The signal is found on pin 60.

All instances of Local Expansion Ports have a Bus Grant of some kind
from the 68000. In the A2000, as in the ASO0 and A1000, this is di-
rectly connected to the 68000's /BG output. In the B200O, a Co-
processor specific Bus Grant signal, /CBG, is in its place. In either
case, the signal is asserted by the 68000 in response to a Bus Re-
quest. This indicates to the device in the Coprocessor slot that the
68000 will fully relinquish the bus at the end of this cycle. A /BG re-
ceived on the Coprocessor Slot in an A2000 could be a Grant given in
response to an Expansion Bus DMA request as well as one in re-
sponse to the Coprocessor Slot DMA request. On the B2000, /CBG
will only be asserted if the Coprocessor Slot is granted the bus. This
signal is found on pin 64.

This is the 68000's /BGACK, or Bus Grant Acknowledge, signal. Any
device that receives a bus grant from the 68000 should assert this
signal as long as the DMA continues, releasing it once the DMA re-
quest is finished. This signal should never be asserted until the spe-
cific Bus Grant has been received, /AS is negated, /DTACK is negated,
and /BGACK itself is negated, indicating that all other potential bus
masters have relinquished the bus. This output is driven as a wired-
OR output, so all devices driving it must drive it with an open collec-
tor or equivalent device. Pin 62.

This signal exists only on the B200O0, on pin 20. That pin is unused
on both the A2000 and the AS00. Originally, this pin was called /PA-
LOPE on the A1000, and was part of the planned ROM expansion
method. This is currently obsolete; the method of ROM expansion
was changed to work without the need for such a signal. On the
B2000, the /BOSS signal is driven by a Coprocessor instead of
/BGACK when the Coprocessor wishes the DMA access granted it to
be & true Coprocessor access, not a simple DMA. This is all explained
in the following section on the B200O coprocessor interface.

95

THE B2000
COPROCESSOR
INTERFACE

Normal 68000 DMA
Architecture

Where the 68000 DMA
Protocol Fails

The B2000 computer implements an extended version of the
A2000's Coprocessor Slot, designed to make the swapping of main
processors under program control much more powerful and trans-
parent to the rest of the B2000 system. There are things that can be
done from the B2000 Coprocessor slot that can't be done from the
A2000's Coprocessor Slot. so this is an important consideration to
anyone designing a Coprocessor device of some kind.

The 68000 supports hardware signals designed to permit a simple
DMA protocol. This protocol allows multiple devices to take control
of the 68000’s data, address, and control buses. When a device of
some kind desires direct access tc the 68000's bus, it asserts the /BR
(Bus Request) input of the 68000. Once /BR is asserted, the 68000
will complete whatever operation it's doing to the point it can cleanly
relinquish its bus. At this point, it will assert its /BG (Bus Grant) out-
put, telling the device requesting DMA that it's just about ready to
shut down. The requesting device then issues /BGACK (Bus Grant Ac-
knowledge) as soon as the 68000 is completely off the bus (DTACK
and /AS are negated). When the DMAing device is done with the bus,
it releases /DTACK and /BR, and the 68000 will then release /BG.

The above protoco!, as implemented in the 68000, is sufficient for
many types of DMA operation, especially for simple things in which
there are single DMA devices on the bus. What this doesn't easily ac-
count for are multiple DMA devices. While the /BR and /BGACK in-
puts to the 68000 can be wire-ORed to support several devices,
there are still problems with this scheme. Should multipie devices re-
quest DMA at the same time, the 68000 will see nothing different
than if only one device is requesting DMA. While careful monitoring
of the /BGACK by responding potential bus masters can solve some
of the problems, there are much cleaner approaches to this problem.

One such solution is implemented in the ZORRO and A2000/B2000
Expansion Buses. Each slot on the Expansion Bus has its own private
Bus Request and Bus Grant. Each Bus Request signal is considered by
a priority encoding and latching circuit. The result is that if simulta-
neous Bus Requests come in from Expansion Slots, only the Slot giv-
en higher priority will actually get a Bus Grant. Any Bus Requests
that come in while another DMA is in effect are held off until the
68000's/BG line has been negated for at jeast one tick. this circuitry,
part of the original ZORRO specification, eliminates the problems
that can occur with various DMA devices all competing for the Ex-
pansion and Local Buses.

96

The B2000 Coprocessor
Solution

The B2000 hardware has implemented a more sophisticated Co-
processor system that removes these problems. The B2000 Co-
processor Slot has a signal called /CBR {Coprocessor Bus Request) as
a replacement for /BR, a signal called /CBG (Coprocessor Bus Grant)
as a replacement for /BG, and one additional signal, /BOSS, which is
also known as Coprocessor Grant Acknowledge.

Under the B2000 system, there are essentially two ways a Coproces-
sor device can receive a Local Bus mastership. Both start in the same
way. To request the bus, the Coprocessor asserts /CBR. Instead of
going directly to the 68000, this signal is prioritized and latched
along with any Expansion Slot /BR signals. The /CBR signal has the
highest DMA priority. Assuming no other DMAs are currently active,
the 68000 issues a Bus Grant via /BG, which will go to the priori-
tizer' and result in /CBG being asserted. At this point, all other DMA
requests will be locked out; no other /BGs of any kind will be issued.
Following the normal 68000 protocol, at this point, the Coprocessor
will assert /BGACK when the 68000 is off the bus, and will have bus
access as before. And as before, it is holding off any further DMAs
from the Expansion Bus {which may be what was wanted). This type
of DMA access is very similar to what a normal DMA device from the

Expansion Bus would achieve.

There is another way to take over the Bus. This starts in the same
manner as before, with a /CBR resulting in a /CBG. Once the Co-
processor has received its Bus Grant, however, it does something dif-
ferent. It asserts the /BOSS signal instead of /BGACK. This has sever-
al immediate effects. First of all, the 68000 sees /BOSS as the same
thing as /BGACK, so it stays off the bus just as if /BGACK had been
asserted. Next, the data direction of /CBR and /CBG change on the
Coprocessor Bus. The /CBR signal is now an output from the bus
control logic, the prioritized and latched combination of all the /BR
signals from the Expansion Bus. The /CBG signal is now an input go-
ing into the bus control logic that will be passed on to the Expansion
Bus in response to an Expansion Bus /BR. The bus control logic also
holds /BR to the 68000 in a low state. The data direction of /CBR
and /CBG changes with a change in /BOSS, so the lines that alternate-
ly drive /CBR and /CBG on a Coprocessor card should be enabled and
disabled with the assertion of /BOSS.

Anyway, what all this means is that, in asserting /BOSS instead of
/BGACK, the Coprocessor has the bus, the 68000 is in tri-state, and
any of the Expansion Slots may initiate a DMA of the Coprocessor at
any time, directly, according to the normal /BR — /BG — /BGACK
protocol of the 68000. The Coprocessor can allow the 68000 back
on the bus by negating the /BOSS line. Thus, the Coprocessor can be
a real Coprocessor, functioning as the equivalent of the 68000 for all
things as far as the whole Amiga system is concerned.

"The B2000 system does all of its DMA prioritization via the
“Buster” custom bus controller chip.

97

86 PIN CONNECTOR
PINOUTS

Here are the four instances of the 86 pin Local Bus. the ASO0 and
A1000 Edge connectors, used for all kinds of expansion on those
machines, and the A2000 and B2000 Coprocessor slots.

PIN A500 A1000 A200C B2000 Function

Lo~ U &~ W —

11

12
13
14
15
16
17
18
19
20

21
22
23
24
25
26
27
28
29
30
31
32
33

35
36
37

b i T o

B e e N a T T =<

>

b b e I I I g I L I b e

< P i i i A e T

g i B T a T a

o A A I I I i I T e

fe]
x

Pl i i S e P S Pl i i I T

>

P e T i e a R a Ta Ea a e

= po e i I I A

e S g I e e e

Pl i R I I I I a T e T T e T T e e W e e

Ground
Ground
Ground
Ground
+5VDC
+5vDC

No Connect
-5VDC

No Connect
28MHz Clock
+12vDC
No Connect
/COPCFG (Configuration Out)
CONFIG IN, Grounded
Ground

/C3 Clock
CDAC Clock
/C1 Clock
/OVR

RDY

fINTZ2
fPALOPE
No Connect
/BOSS

A5

/INTE

AB

Ad

Ground

A3

A2

A7

Al

A8

FCO

A9

FC1

Al10

FC2

All
Ground
Al2

PIN ASO0 A1000 A2000 B2000 Function

39 X X X X Al3
40 X X X X JIPLO
41 X X X X A4
42 X X X X /IPL1
43 X X X X A15
44 X X X X JIPL2
45 X X X X Al6
46 X X X X /BEER
47 X X X X Al7
48 X X X X /NPA
445 X X X X Ground
50 X X X X EClock
51 X x X X /VMA
52 X X X X Al8
53 X X X X /RST
54 X X X X Al9
55 X X X X /HLT
B6 X X X X A20
57 X X X X AZ22
58 X X X X A2l
59 X X X X AZ3
60 X X X /BR

X /CBR
61 X X X X Ground
62 X X X X /BGACK
63 X X X X D15
64 X X X /BG

X /CBG
65 X X X X D14
66 X X X X /DTACK
67 X X X X D13
68 X X X X RW
69 X X X X Di2
70 X X X X /LDS
71 X X X X D11
72 X X X X /UDS
73 X X X X Ground
74 X X X X /AS
75 X X X X DO
76 X X X X Dio
77 X X X X Dl
78 X X X X D9
79 X X X X D2
80 X X X X D8
8 X X X X D3
82 X X X X D7

w
(e}

PIN AS00 A1000 AZ000 B2000 Function

83 X X X X D4
84 X X X X D6
85 X X X X Ground
86 X X X X Db

100

The Amiga 2000 Video Slot

INTRODUCTION

ORIGINAL A2000 SLOT

POWER CONNECTIONS

Video Ground

Main Supply (+ 5V}

Negative Supply (—5V)

This document details the signals found on the internal video slot of
the Amiga 2000 (A2000), and the additional component of this slot
as implemented on the B2000 model. The A2000 video connector is
a 36 pin edge connector, mechanically similar to the slot extension
connector of an IBM PC-AT. The B2000 adds a second 36 pin con-
nector, directly in front of the first one. that supplies additional au-
dio/video information. Where possible, a device should use only the
first slot, thus maintaining compatibility with both A2000 and
B2000. Of course, there are quite a few things that can't be accom-
plished with the A2000 connector alone.

The original A2000 video slot was designed to provide the function-
ality of the 23 pin external video connector in a form that could in-
ternally house video boards such as modulators, genlocks, etc.

The Video Slot provides several different voltages designed to supply
Video devices. The A2000 power supply is currently rated at 200
Watts, which supplies the main board and all other expansion ports
as well as the Video Slot.

Video supply ground used by all video devices and the interna! video
circuitry. Currently on the B20QO, the Video and Digital grounds are
common signals, while on the A2000 these are distinct. This is avail-
able on pins 9, 12, 13, 17, 20, 21, 24, 32.

Main digital level power supply for the Video Slot. This can supply
large currents, on the order of 2 Amps or so for the Video Slot. The
maximum supply current for the entire A2000 system is 20 Amps
for all devices inside the A2000 that use + 5V, including the mother-
board. Pins: 6, 8.

Negative version of the main supply. for small current loads only;
there’s a total of 0.3 Amp for the entire A2000 system. Pin: 31.

101

High Voltage Supply
(+12V)

CLOCK SIGNALS
/C1 Clock

/C4 Clock

External Clock (XCLK, /
XCLKEN)

VIDEO SIGNALS

Analog Video

Digital Video

Higher voltage supply. intended for small loading only; there’s a total
of 8 Amps for the entire A2000 system, much of which is normally
devoted to floppy and hard disk drive motors. Pin: 10.

These are various clock signals useful for synchronous timing of vid-
e0 peripherais. Coe

For NTSC, this is a 3.58 MHz clock that’s synched to the falling edge
of the 7.16 MHz system clock. Also known as /CCK in some places.
Pin 34. For PAL, these frequencies are 3.55 MHz and 7.09 MHz re-
spectively.

For NTSC, this is a 3.58 MHz clock that's synched to the rising edge
of the 7.16 MHz CDAC clock. Pin 19. Again, for PAL, these frequen-
cies are 3.55 MHz and 7.09 MHz respectively.

The video slot provides for an external system clock, generally used
to cause the entire A2000 system to become synchronized to some-
thing external. This should be something very close to the 28.64
MHz clock normally used to drive the system; the vaiue used for
XCLK can be a somewhat higher frequency, although anything too
high will cause memory and other system timings to break down.
XCLK will only be engaged as the system clock when /XCLKEN is as-
serted. XCLK is found on pin 33, /XCLKEN is on pin 16. There is no
fixed phase relationship between XCLK and internal clocks and video
outputs. Video interfaces must synchronize to the output clocks/
video.

The main point of this slot is access to the video signals generated by
the Amiga’s custom video chips. Most of these are also found on the
23 pin external video connector.

This is the analog RGB output, which consists of Red, Green, and
Blue signals, each of which generates a 0.7V p-p, 47 Ohm terminated

- analog output. Found, respectively, on pins 7, 11, and 15.

These signals serve as digital output, suitable for use with an IBM or
Commodore 128 style 4 bit digital color or monochrome monitor
or similar output device. On the B200Q0, these (in conjunction with

102

Separate Sync (/HSYNC,
/VSYNC)

Composite Sync
(/CSYNC, COMP SYNC)

Burst

Pixel Switch (/PIXELSW)

AUDIO SIGNALS

RESERVED FOR
EXPANSION

BZ2000 EXTENDED
VIDEO SLOT

other signals found on the second video connector) provide access to
the full 12 bits of digital video output produced on the motherboard
by the Denise chip (4 bits each of R, G, and B). Each of these outputs
is 47 Ohm terminated. The pin assignments are Digital Red (R3) on
pin 29, Digital Green (G3) on pin 27, Digital Blue (B3) on pin 25, and
Digital Intensity (BO) on pin 23.

These are the separate, bidirectional, 47 Ohm terminated video
frame synchronization clocks. The horizontal sync, /HSYNC, is on pin
22; the vertical sync, /VSYNC, is on pin 26. As the names imply, these
sync signals are active low.

Two versions of a composite synchronization signal are available. Pin
14, /CSYNC, is an unterminated digital level composite sync; pin 28,
COMP SYNC, is a buffered TTL version of the combined synchroniza-
tion clocks.

NTSC/PAL colorburst. Pin 18. To obtain the correct PAL colorburst
signal, the video plug-in card must multiply this signal by 1.25 (i.e.,
3.55%1.25=4.433 MHz).

Background color indicator (color O), on a pixel by pixel basis. 47
Ohm terminated, /PIXELSW, pin 30.

Along with access to video signals, audio signals are available at the
Video Slot. The audio signals are the Left and Right audio channels,
on pins 3 and 4 respectively.

The original Video Slot has pins 1, 2, 5, 35, and 36 reserved for fu-
ture expansion.

The B2000 Extended Video Slot was designed to provide nearly ev-
ery internal video signal available, plus additional audio signals and
some control lines too. This slot allows much more complex and
powerful devices to be placed in the video slot. '

103

-

POWER CONNECTIONS

Digital/Video Ground
(GROUND)

Audio Ground

CLOCK SIGNALS

CDAC Clock

/C3 Clock

Timer Time Base
(TBASE)

VIDEO SIGNALS

Composite Video

The Extended Video Slot provides several different voltages designed
to supply Video devices. The A2000 power supply is currently rated
at 200 Watts, which supplies the main board and all other expansion
ports as well as the Video Slot.

These pins provide additional grounding for digital or video based
devices. Pins 1.5, 9. 12, 22, and 32.

These pins provide grounding in commeon with the separate on-
board audio ground. Pins 34, 36.

These are various clock signals useful for synchronous timing of vid-
eo peripherals.

For NTSC. this1s a 7.16 MHz clock that leads the 7.16 MHz system
clock by about 70ns (S0 degrees). Pin 15. For a PAL system, this Is
7.09 MHz.

For NTSC, this 1s a 3.58 MHz clock that's synched to the rising edge
of the 7.16 MHz system clock. Also known as /CCK{) in some places.
Pin 17. For a PAL system. this is 3.55 MHz.

This is the real time clock time-base input, either 50Hz or 60Hz, de-
pending on the country involved and the setting of the Time Base
Jumper. The jumper can select either line frequency or vertical syn-
chromization as the clock’s time base. Pin 14.

The main point of this slot is access to more of the video signals gen-
erated by the Amiga’s custom video chips. Most of the signals avail-
able here aren't available on any external port.

This is the analog level monochrome Compaosite Video signal also
available on the Composite Video jack of the BZ00O. Pin 13.

104

Digital Video

LIGHT PEN (/LPEN)

PORT CONNECTIONS

8 Bit Parallel Port
(PDO-PD7)

Parallel Port Handshake
(/ACK)

Other Port Lines (BUSY,
POUT, SEL)

The remaining 8 bits of digital video are available on this connector.
The signals are Red 0-2 (pins 2, 3, 4), Green 0-2 (pins 6, 7, 8), and
Blue 1-2 (pins 10 and 11). The timing of the digital video is not
tightly specified. Developers wishing to use this should contact Com-
modore for further details.

This is an input to the Agnus light pen input. This signal should go
low in response to the lighting of a pixel on a video display monitor.
The Agnus chip latches the raster position that was in effect when
the /LPEN signal goes low, so an application can follow the position
of a light pen on the screen. Pin 19.

Most of the signals from the bidirectional parallel port (printer port)
are available on this connector as well, along with a few others.

The 8 bit bidirectional parallet port most commonly used to drive a
Centronics interface printer externally is accessable here. It can be
used to control various aspects of a complex video interface device.
The port lines PDO-PD7 are on pins 23 to 30 of this connector.

This is the acknowledge (/ACK) input, the same as the acknowledge
input to the parallel port. Driving this with an output from a Video
Card can cause a level 2 interrupt to occur through the 8520 CIA de-
vice this is connected to, based on the programming of an 8520 reg-
ister. On pin 20.

Connector pins 18 (BUSY) and 16 (POUT) are general purpose I/0
signals that together can also function as a synchronous serial data
port driven by an 8520 CIA device. In normal printer use, the BUSY
signal is used to indicate printer buffer full to the Amiga, while POUT
is used to indicate the printer paper is out. For serial port usage,
BUSY is the serial clock, POUT is the serial data line. These should be
driven with open collector devices if the Video Card uses them as in-
puts to the 8520. The SEL signal, on pin 21. is a general purpose 1/0
port, usually used as a device select signal on the parallel port.

105

AUDIO SIGNALS

Raw Audio

Filter Cutoff (/LED)

VIDEO SLOT PINOUTS

The B2000 Extended Video Slot offers a few additional audio sig-
nals.

These are the left and right audio channels before theyre passed
through the low pass filter on output. For many applications, the
audio sampling rate is low, and as such requires a low pass filter to
be in place at fc = 6 kHz or so, to prevent audio aliasing. However,
higher sampling rates are possible, and in such cases, a much higher
filtering frequency is required for best possible sound. This raw
audio, left on pin 33 and right on pin 35, is buffered but unfiltered.

This is the /LED port line. In the B2000, as per the A500 convention,
this signal is used to cut out the two pole low pass filter on the stan-
dard audio channels. When asserted, the filter is in place; when ne-
gated the filter is bypassed. This is an input to this Video connector,
useful to allow any Audio/Video card to monitor the audio filtering
state. Pin 31.

The original AZ000 video slot is a 36 pin edge connector, the same
type as used on the A2000's 16 bit IBM style bus extension.

PIN 5ignal PIN Signal
1 Reserved for Expansion 2 Reserved for Expansion
3 Left Audioc Qut 4 Right Audio Out :
5 Reserved for Expansion 6 +5VDC
7 Analog Red . 8 +5VDC
9 Video Ground 10 +12VDC

11 Analog Green 12 Video Ground

13 Video Ground 14 ACSYNC

15 Analog Blue 16 /XCLKEN

17 Video Ground 18 BURST

19 /C4 Clock 20 Video Ground

21 Video Ground 22 /HSYNC (47 Ohm)

23 BO = DI (47 Ohm) 24 Video Ground

25 B3 = DB (47 Ohm) 26 /VSYNC (47 Ohm)

27 G3 = DG (47 Ohm) 28 COMP SYNC (Analog)

29 R3 = DR (47 Ohm) 30 /PIXELSW (47 Ohm})

31 -5vDC 32 Video Ground

33 XCLK 34 /€1 Clock

35 Reserved for Expansion 36 Reserved for Expansion

106

The expanded B2000 video slot is a 36 pin edge connector, the same

type as used on the 16 bit IBM style bus extension.

PIN

Signal

Ground

R1

Ground

a1

Ground

B2

Composite Video
CDAC Clock

/C3 Clock

/LPEN

SEL

PDO

PD2

PD4

PD6

/LED

Raw Audio Left
Raw Audio Right

107

PIN

Signal

RO

R2

GO

G2

B1

Ground
TBASE

POUT

BUSY

/ACK

Ground

PD1

PD3

PD5

PD7

Ground

Audio Ground
Audio Ground

Section 4.1
Description of PC/XT Emulator for AMIGA 2000

AMIGA ACCESS: Amiga Interface Offset Address = Base Addr.

Base Addr. + (00000 — 1FFFF) : Byte Access

Base Addr. + (20000 — 3FFFF) : Word Access

Base Addr. + (40000 — SFFFF) : Craphic Access
Base Addr. + (60000 — 7FFFF) : VO Register Access

INTERFACE MEMORY Interface

MAP: Offset Address Size Usage
00000 . .. OFFFF 64K DISK BUFFER RAM
10000 ... 17FFF 32K COLOR VIDEO RAM
18000 ... 1BFFF . 16K PARAMETER RAM
1CO00 ... 1DFFF 8K MONO VIDEQ RAM
1E0QO ... 1FFFF 8K 10-PAGE

Kinds of memory access on the following pages:
B = Byte access
G = Graphic access
W = Word access

(" selectable by BIT 5 and 6 of the MODE REGISTER
BIT 5 = SEL1
BIT 6 = SELZ

109

PC MEMORY AND

/0 MAP:
kind of Amiga Interface
PC Address Range Size Usage access Offset Address
0000 O3FF 1K 10-PAGE B 1EQOO ... 1FFFF
W 3EQQO ... 3FFFF
G 5EQQO ... 5FFFF
7EQQ0 ... 7FFFF
A000O ... AFFFF 64K DISK BUFFER RAM () B 00000 ... OFFFF
(*) W 20000 ... 2FFFF
*) G 40000 . .. 4FFFF
BOOOO ... B1FFF 8K MONO VIDEO RAM B 1C000 ... 1DFFF
W 3C000 ... 3DFFF
G 5C000 ... 5DFFF
BBOOO ... BFFFF 32K COLOR VIDEO RAM B 10000 ... 17FFF
' W 30000 ... 37FFF
G 50000 ... 57FFF
EQOQO . .. EFFFE 64K DISK BUFFER RAM (*) B 00000 ... OFFFF
*) W 20000 ... 2FFFF
* G 40000 . .. 4FFFF
DOOOO . .. DFFFF 64K DISK BUFFER RAM (%) B 00000 ... OFFFF
(*) W 20000 ... ZFFFF
) G 40000 . .. 4FFFF
FOOOO . .. F3FFF 16K PARAMETER RAM B 18000 ... 1BFFF
W 38000 ... 3BFFF
G 58000 ... 5BFFF
AMIGA MEMORY MAP:
Amiga Interface kind of
Offset Address PC Address Range Size Usage access
00000 ... OFFFF AQOQOO ... AFFFF 64K DISK BUFFER RAM (*) B
00000 ... OFFFF DOCOO ... DFFFF 64K DISK BUFFER RAM (%) B
00000 ... OFFFF EQQOO ... EFFFF 64K DISK BUFFER RAM (*) B
10000 ... 17FFF B80OO ... BFFFF 32K COLOR VIDEO RAM B
18000 ... 1BFFF FOOQO ... F3FFF 16K PARAMETER RAM B
1C000 ... 1DFFF BOOOO ... B1FFF 8K MONO VIDEO RAM B
1EQQQ ... 1FFFF 0000 ... O3FF 1K 10-PAGE B
20000 ... 2FFFF AQOQOQ ... AFFFF 64K DISK BUFFER RAM (¥) W
20000 ... 2FFFF DOOCO . .. DFFFF 64K DISK BUFFER RAM {*) w
20000 ... 2FFFF EQOQO ... EFFFF 64K DISK BUFFER RAM {*) W
30000 ... 37FFF BB0OO ... BFFFF 32K COLOR VIDEO RAM w
38000 ... 3BFFF FOOOO ... F3FFF 16K PARAMETER RAM W
3C000 ... 3DFFF BOOQO ... BIFFF 8K MONO VIDEQ RAM W
3EQ00 ... 3FFFF 0000 ... O3FF 1K 10-PAGE W
40000 ... 4FFFF AQOCO . .. 64K DISK BUFFER RAM (*) G

AFFFF

110

40000 ... 4FFFF DOOOO . .. DFFFF 64K DISK BUFFER RAM (*) G
40000 ... 4FFFF EOCQQ ... EFFFF 64K DISK BUFFER RAM (*) G
50000 ... 57FFF B80OOO . .. BFFFF 32K COLOR VIDEO RAM G
58000 ... 5BFFF FOO0O ... F3FFF 16K PARAMETER RAM G
5C000 ... SDFFF BOOOO ... B1FFF BK MONQ VIDEO RAM G
5EQQQ ... 5FFFF 0000 03FF 1K [0-PAGE G
7EQQ0 ... 7FFFF 0000 03FF 1K 10-PAGE
AT MEMORY and 1/0 MAP:
kind of Amiga Interface
PC Address Range Size Usage access Offset Address
0000 03FF 1K 10-PAGE B 1EQCO ... 1FFFF
w 3E0CO ... 3FFFF
8] SE0QQ ... SFFFF
7EQCOQ ... 7FFFF
AQQQO . .. AFFFF 64K DISK BUFFER RAM (*) B 00000 ... OFFFF
" w 20000 ... 2FFFF
™ G 40000 ... 4FFFF
BOOCO B1FFF 8K MONO VIDEO RAM B 1C000 ... 1DFFF
W 3C000 ... 3DFFF
G 5C000 ... BDFFF
B80OOO ... BFFFF 32K COLOR VIDEO RAM B 10000 ... 17FFF
w 30000 ... 37FFF
G 50000 ... 57FFF
DOOOO ... D3FFF 16K PARAMETER RAM B 18000 ... 1BFFF
W 38000 ... 3BFFF
' G 58000 ... 5BFFF
D4000 . .. DFFFF 64K DISK BUFFER RAM (*) B 04000 ... OFFFF
- ™ W 24000 ... 2FFFF
* G 44000 ... 4FFFF
AMIGA MEMORY MAP:
Amiga Interface kind of
Offset Address AT Address Range Size Usage access
00000 ... OFFFF AQQOO ... AFFFF 64K DISK BUFFER RAM (*) B
00000 ... O3FFF CAN NOT BE ACCESSED BY THE AT
04000 ... OFFFF D4000 ... DFFFF 48K DISK BUFFER RAM (*) B
10000 ... 17FFF B80OO . .. BFFFF 32K COLOR VIDEO RAM B
18000 ... 1BFFF DOO0O0 ... D3FFF 16K PARAMETER RAM B
1C000 ... 1DFFF BOOOO ... B1FFF 8K MONO VIDEO RAM B
1E0QQ ... 1FFFF 0000 QO3FF 1K IO-PAGE B
20000 ... 2FFFF AQOQC ... AFFFF 64K W

20000 ...

23FFF

CAN NOT BE ACCESSED BY THE AT

111

DISK BUFFER RAM (*)

AMIGA MEMORY MAP:

Amiga Interface Kind of
Offset Address AT Address Range Size Usage access
24000 ... 2FFFF DAO0O ... DFFFF 48K DiSK BUFFER RAM (*) w
30000 ... 37FFF B8BOOO ... BFFFF 32K COLOR VIDEO RAM w
38000 ... 3BFFF DOOOO ... D3FFF 16K PARAMETER RAM W
3C000 ... 3DFFF BOOQO ... BIFFF 8K MONO VIDEQ RAM W
3EQ00 ... 3FFFF 0000 ... O3FF 1K 10-PAGE W
40000 . .. AFFFF ADOOOQ ... AFFFF 64K DISK BUFFER RAM (*) G
40000 ... 43FFF CAN NOT BE ACCESSED BY THE AT
44000 . .. 4FFFF 04000 ... DFFFF 48K DISK BUFFER (%) G
50000 ... 57FFF B80OOO ... BFFFF 32K COLOR VIDEC RAM G
58000 ... 5BFFF DOOOO . .. D3FFF 16K PARAMETER RAM G
5C000 ... SDFFF BOOQO ... BIFFF 8K - MONO VIDEO RAM G
5EQQQ ... SFFFF 00C0 03FF 1K 10-PAGE G
7EQQQ ... 7FFFF 0000 O3FF 1K 10-PAGE
PC/AT I/Q REGISTER MAP
PC/AT 1/0 Offset Address
Address Usage INTERFACE / AMIGA
60 KEYBOARD DATA (W) 1E41F 7E41F
61 SYSTEM REGISTER W) 1EQSF 7EQ5F
62 SYSTEM STATUS (W) 1EO3F 7EO3F
2F8 COMZ TRANSMIT DATA (DLAB=Q) (W) 1EQ7D 7EO7D
2F8 " RECEIVE DATA (DLAB = Q) {R) 1E09D 7E0SD
2F8 " RESET IRQ3b (DLAB=0) (R) 1EQ9D 7EOSD
2F9 " INTERRUPT CONTROL (DLAB = 0) (W) 1EOBD 7EOBD
2F9 " INTERRUPT CONTROL (DLAB=0) (R) 1EQDD 7EODD
2F8 " DIVISOR LATCH (LSB) (DLAB=1) (R'W) 1EQ7F 7EO7F
2F8 “ RESET IRQ3b (DLAB=1) (R) 1EO7F TEOT7F
2F9 " DIVISOR LATCH (MSB) (DLAB=1) (R/W) 1EO9F 7EQ9F
2FA COMZ INTERRUPT ACKN (R) LEOFF 7EQFF
ZFA DUMMY (W) 1EQ1F 7EO1F
2FB " LINE CONTROL (DLAB=BIT 7) (W) 1E11F 7E11F
2FB DUMMY (R) 1EQtF 7EO1F
2FC " MODEM CONTROL (W) 1E13F 7E13F
2FC DUMMY (R} 1EQ1F T7EO1F
2FD " LINE STATUS (R) 1E15F 7E15F
2FD DUMMY (W) 1EO1F 7EO1F
Z2FE " MODEM STATUS (R} 1E17F 7E17F
2FE DUMMY (W) 1EOIF 7EOIF
2FF DUMMY (R'W) 1E01F 7EO1F
378 LPT1 PRINTER DATA (R'W) 1E1GF 7E19F
379 " STATUS (R) 1E1BF 7E1BF

112

PC/AT 110 Offset Address

Address Usage INTERFACE / Amiga
379 " RESET [RQ7 - (R 1E1BF 7E1BF
379 " INTERRUPT CONTROL w) 1E19F 7EISF

BIT6 = 0:0ON - N
BIT6 = 0:0FF
37A " CONTROL (W) 1E1DF 7E1DF
37A " CONTROL (R) 1E19F 7E19F
3B0 MONO CRT ADDRESS INDEX REGISTER (W) 1E1FF 7EIFF
3B0 " RESET IRQ3.a {(R) 1EO1F 7EOIF
382 ST CRT ADDRESS INDEX REGISTER (W) 1E1FF 7E1FF
382 DUMMY (R) 1EO1F 7EQIF
3B4 " CRT ADDRESS INDEX REGISTER (W) 1E1FF 7E1FF
3B4 DUMMY (R) 1E0IF 7EOftF
386 " CRT ADDRESS INDEX REGISTER (W) 1E1FF 7E1FF
3B6 DUMMY (R) 1EO1F 7EOTF
3B1 " CRT DATA REGISTER {R/'W) sb.
3B3 " CRT DATA REGISTER (R'W) sb.
3B5 " CRT DATA REGISTER (RW) s.b.
387 " CRT DATA REGISTER (RW) s.b
LAST WRITE ON INDEX = 00 1E2A1 7EZ2A1
LAST WRITE ON INDEX = 01 1E2A3 7EZA3
LAST WRITE ON INDEX = 02 - 1E2A5 7E2A5
LAST WRITE ON INDEX = 03 1E2AT7 TE2A7
LAST WRITE ON INDEX = 04 1E2AQ 7EZAQ
LAST WRITE ON INDEX = 05 1E2AB 7E2AB
LAST WRITE ON INDEX = 06 . 1E2AD 7E2AD
LAST WRITE ON INDEX = Q7 1E2AF 7E2AF
LAST WRITE ON INDEX = 08 1E2B1 7EZ2B1
LAST WRITE ON INDEX = 08 . 1E2B3 TEZB3
LAST WRITE ON INDEX = QA 1E2B5 7EZ2BS
LAST WRITE ON INDEX = OB ‘ 1E2B7 7E2B7
LAST WRITE ON INDEX = OC 1E2B9 7EZB9
LAST WRITE ON INDEX = OD 1E2BB 7EZBB
LAST WRITE ON INDEX = OE 1E2BD 7EZ2BD
LASTWRITEON INDEX = QF . . 1E2BF 7EZ2BF
388 MONO CONTROL REGISTER (W) 1E2FF 7E2FF
3BA MONC STATUS REGISTER (R) - —
BITO : H-SYNC{ 18KHz)
BIT3 : V-SYNC(S50 Hz)
3BA DUMMY : W) 1EO1F 7EO1F
3BB DUMMY (R'W) 1EOIF 7EO1F
3BC DUMMY (R'W) 1EOIF 7EOIF
38D DUMMY (R'W) 1EOIF 7EO1IF
3BE DUMMY (RW) 1EO1IF 7EOIF
3BF DUMMY (R'W) 1EO1F 7EQIF

113

PC/AT 110 Offset Address
Address Usage INTERFACE/ Amiga
3D0 COLOR CRT ADDRESS INDEX REGISTER (W) 1E21F 7EZ21F
3D0 {R) 1EQO1F 7EOIF
302 " CRT ADDRESS INDEX REGISTER (W) 1E21F 7E21F
302 (R) 1EO1F 7EO1F
3D4 " CRT ADDRESS INDEX REGISTER (W) 1E21F 7E21F
3D4 (R) 1EQ1F 7EOIF
306 y CRT ADDRESS INDEX REGISTER (W) 1E21F 7E21F
3D6 (R) 1EQ1F 7EO1F
3D " CRT DATA RECGISTER (R/W) s.b.
303 " CRT DATA REGCISTER {R/W) s.b.
305 " CRT DATA RECGISTER (R/W) s.h.
307 i CRT DATA REGISTER (RW) sh
LAST WRITE ON INDEX = 00 1E2C1 7E2CH
LAST WRITE ON INDEX = 01 1E2C3 7E2C3
LAST WRITE ON INDEX = 02 1E2CS 7E2C5
LAST WRITE ON INDEX = 03 1E2C7 TE2CT
LAST WRITE ON INDEX = 04 1E2C9 7E2CO
LAST WRITE ON INDEX = 05 {E2CB 7E2CB
LAST WRITE ON INDEX = 06 1E2CD TEZCD
LAST WRITE ON INDEX = 07 1E2CF 7E2CF
LAST WRITE ON INDEX = 08 {E2D1 7EZ2D1
LAST WRITE ON INDEX = 09 1E2D3 7EZ2D3
LAST WRITE ON INDEX = OA 1E2D5 7E2D5
LAST WRITE ON INDEX = OB 1E207 7E2D7
LAST WRITE ON INDEX = OC 1E2D9 7E2D9
LAST WRITE ON INDEX = OD 1E2DB 7EZDB
LAST WRITE ON INDEX = OE 1E2DD 7E2DD
LAST WRITE ON INDEX = OF 1E2DF 7E2DF
308 COLOR CONTROL REGISTER (W) 1E23F 7EZ3F
308 DUMMY (R) 1EQ01F 7EQIF
309 COLOR SELECT REGISTER (W) 1E25F 7EZ2BF
309 DUMMY (R) 1EO1F 7EO1F
3DA COLCR STATUS REGISTER {R) - -
BITO H-SYNC (18KHz)
BIT 3 V-SYNC (50 Hz)
3DA DUMMY {W) 1EOIF 7EO1F
3DD DISPLAY SYSTEM REGISTER (W) 1E29F T7EZ29F
30D DUMMY (R) 1EOIF 7EO1F
3DE DUMMY (R'W) 1EO1F 7EQ1F
3DF DUMMY (RW) 1EO1F 7EOLF

114

AMIGA /0 MEMORY MAP
(REGISTER DESCRIPTION)

Offset Address
AMIGA Register Interface / Memory INTERFACE /AMIGA
AMIGA INTERRUPT STATUS read register 1FF1 7FF1
PC INTERRUPT STATUS read register 1FFF3 TFFF3
NEGATE PC RESET read register 1FFF5 TFFFS
MODE REGISTER read register / write register 1FFF7 TFFF7
INTERRUPT MASK read memory / write register 1FFF9 7FFF9
PC INTERRUPT CONTROL read memory / write register 1FFFB 7FFFB
CONTROL REGISTER read memory / write register 1FFFD 7FFFD
KEYBOARD REGISTER read memory / write register 1FFFF 7FFFF
PC SIDE System Status Register:

How to Enable/Disable Interrupts from Amiga to PC

A write access to this register (i/o location 62 hex) forces a /SYSINT
interrupt on the AMIGA side

A write access to bit 6 of i/o location 379 hex enables/disables the
AMIGA forced interrupts IRQ1 (keyboard), IRQ3 (serial interface
COM2) and IRQ7 (parallel interface LPT1) as foilows:

D6 Function

0 interrupts enabled
1 interrupts disabled
Note:

The access to i/o location 379 hex is enabled if PARON is high. That
is, the AMIGA has to write a 1" to MODE REGISTER bit 1. (See
‘Amiga Mode Register.”)

The following initialization routine must be used to allow an external
printer card on the pc side:

AMIGA: set MODE REGISTER bit 1 to 17 : switch parallel

; interface on
PC : seti/olocation 379 hex bit 6 to “0”; keyboard and

; serial interr. off
AMIGA: set MODE REGISTER bit 1 to “0” : switch parallel

; interface off

Now the keyboard and the serial interface emulation is enabled, the
parallel interface emulation is disabled.

115

How to Clear an
Asserted Interrupt
Signal

AMIGA SIDE

Amiga Interrupt Status
Register (R)
(1FFF1 / 17FFF1)

PC Interrupt Status
Register (R)
(1FFF3 / 'TFFF3)

INT Negation

IRQ3.a Read to ifo location 3D0 hex
IRQ3b Read come register 2F8 hex
IRQ7 Read line printer status register 379 hex

All registers on the memory locations 1FFFQ TO 1FFFF are only
accessable from the AMIGA side.

Reading this register returns the interrupt events caused on PC ac-
cesses as follows:

Bit no. Function
0 Mono Video Ram (/MINT)
1 Color Video Ram (/GINT)
2 Mono CRT { /CRTLINT)
3 Color CRT (/CRTZINT)
4 Keyboard Register (/ENBKB)
5 LPT1 Control Reg (/LPT1INT)
6 COMZ Data Reg (/COMZINT)
7 see PC System Status Res (/SYSINT)

The event was valid if the bit is set to “1”. After reading the register
all bits turns to "0 automatically and the interrupt flag will be
negated. _

Reading this register returns the pending PC interrupts on the lower
nibble. The PC interrupt is asserted as shown by the corresponding
bit in the table.

Bit no. Function Asserted if
0 IRQ1 (Keyboard interrupt) 1
1 IRQ3.a 0
2 IRQ3_b 0
3 IRQ7 0
47 NOT USED, always HIGH

Bit 1 and bit 2 (IRQ3.a and IRQ3.b) are externally "ORed" to IRQ3

116

Negate PC Reset (R) A read access to this register negates the PC reset line and aliows the
(1FFF5 / 7FFF5) PC to start the boot procedure. On power-on the PC reset line is as-
serted (default).

Mode Register (R/W) Reading this register returns system configuration information
(1FFF7 | 'TFFFT)

Bit no. Name Function
0 SERON serial interface enabled
1 PARON paralle! interface enabled
2 KEYON keyboard interface enabled
3 MCN rmonochrome display emulation enabled
4 COLOR color display emulation enabled
5 SEL1 select the PC/AT memory bank, s.b.
6 SEL2 select the PC/AT memory bank, s.b.
7 PC/AT LOW = AT mode

HIGH = PC mode

Writing to this register sets system configuration information

Bit no. Name Function
0 SERON - switch serial interface on
1 PARON switch parallel interface on
2 KEYON switch keyboard interface on
3 MON enable monochrome display emulation
4 COLOR enable color display emulation
5 SEL1 PC/AT memory bank select, s.b.
6 SELZ PC/AT memory bank select, s.b.
7 /STOPCLK LOW = disable the clock for video

retrace and keyboard
HIGH = enable the clock for video
retrace and keyboard

SEL2 SEL1 PC memory AT memory
0 -0 not used not used
0 1 AQOOO — AFFFF HEX AQDQO — AFFFF HEX
1 0 DOO0O — DFFFFHEX D400 — DFFFF HEX
1 1 EQOQ0 — EFFFF HEX not used

117

Interrupt Mask
Register (R/W)
(1FFF9 / T7FFF9)

PC Interrupt Control
Register (R'W)
(1FFFB [/ T7FFFB)

Control Register (R/'W)
(1FFFD / T7FFFD)

Keyboard
Register (R/W)
(1FFFF / 7FFFF)

You can mask each PC interrupt event separately by writing a "1” to
the corresponding bit as shown below.

Bit no. Maskable Event {cmp. to Amiga interrupt status reg.)

SN AR WN—=O

A PC interrupt can be forced by writing a “0” to the corresponding
bit of the lower nibble except the keyboard interrupt, which can be
asserted by writing a “1"”, as shown below:

Bit no. Asserted PC interrupt level
0 KBSTART (start keyboard shift-register)
1 IRQ3.a (forces interrupt IRQ3)
2 IRQ3.b (forces interrupt 1RQ3)
3 IRQ7

Bit 1 and bit 2 (IRQ3_a and IRQ_b) are externally “ORed” to IRQ3

All controt function will be done by writing a “0” to the correspond-
ing bit. Only bits O to 4 are used.

Bit no.

usage

il &

S W

general interrupt enable to the AMIGA
general interrupt disable to the AMIGA
(default)

assert the PC reset line

negate ail PC interrupt levels except the
keyboard interrupt

reset line printer BUSY (port 379 hex bit 7)
The line printer BUSY bit will be set by writing
a 1" to bit 0 of port 37A hex from PC side.

Keyboard emulation is done by writing a character to this register
and then asserting a “1" to bit O of the PC INTERRUPT CONTROL

REGISTER.

PC/XT Emulator - PC ' ;
PC FLOPPY EXT. FLOPRY
IMTERFACE
_ INT. FLOPPY
|
C P U _ ﬁ
PC 7 IﬂIL
L Rc |)
| ADDRESS
8088 : 2 PC_DATAH: 1>
© DATA
_ IL“L
ﬁx1¢11\x\\xx\““ i PA
_ . — &
1
| ARITWRETIC ‘) PC_ADDRESS<B: 12>
CO -PRUCESSUR |
PG "D
| P -
ﬁ sosz %L|E| Pa B
i 14, 314MHz DRC MDDRE 35 _ IHTh
asc .
. HUX i BUFFER
_) _ PC_CONTRQL
BIOS
ya-D
_ | DRA DRD<®: 7>
|
PC - CUSTOM - CHIP T
—T& cLock & Timing ceneraTION HEPCTREL panrom Re DRAM
COUNTER TIMER CONTROLLER DRC DRC .
DYNAaMEC HMEMORY ACCESS LDGIC CONTROL “ _ 512K * 8 BIT
[MNTERRUPT CONTROLLER LOGIC _
KEYBOARD [NTERFACE !
|
{ { C . { { | ({ { [{ { { {

119

24¥ ady c«ﬁ

cL ol il Y,

ﬂa 'B>ULYQ v RY

.&E.zno YI WY

434404

T alHG3

<ET :@>35dd4aaqy 9OIMd

d3d4dnd

s53daqu

4 o @

SSHOOY DIHIVYD ¥ qQdOH ~AlAE
H04d JALJIHS LIE WLud

JOOSHALHT aHv0dAIA
JTI07T LANGAILH] WMy ® Od
ALN] AHOMAK ¥ A4LS [D3d Y LHW
AWIHIINT AMOWAW ¥ 041 2d

HOLLGEN [INDD OLNY g NOILYALIHAY YDTHY - Od
HOLYISHYAL SNA WLu(HOLYISHUAL SNE SS3dday
Tlll-i
1L4a L:8xqq Law
ud 4
«@.:0>qay
xne T 114 8 = %821
D
S3 34100
L Ha

4

2oejaa1ut -

TOULNOD “.u

<67 :8>5534aGa¥ Jd

<L 1B HLYd a

4eje|nuw3g X Dd

120

Section 4.2

BIOS Entry Points

VIDEO ENTRY POINT SET VIDEO MODE (AH = OOH}
VIA S/W INT 10H INPUT: AL = VIDEO MODE (0-7)

- 40 x 25 alpha b/w

40 x 25 alpha 16 colors

80 x 25 aipha b/w

80 x 25 alpha 16 colors

320 x 200 graphics 4 colors

320 x 200 graphics b/w

640 x 200 graphics monochrome
80 x 25 alpha monochrome

H@@%WW?O

SET CURSOR TYPE (AH=01H)

INPUT: CH = START LINE OF CURSOR (BITS 0-4)
CURSOR CONTROL OPERATION (BITS 5-6)
00 = NON-BLINK
01 = DON'T DISPLAY CURSOR
10 = BLINK @ 1/16 FIELD RATE
11 = BLINK @ 1/32 FIELD RATE
CL = END LINE OF CURSOR (BITS 0-4)

SET CURSOR POSITION (AH =0ZH)
INPUT: BH = Page # if CRT mode is 0 -> 3
(O if graphics or monochrome)

DH = Row # of cursor
DL = Column # of cursor

QUTPUT: None
READ CURSOR POSITION
- INPUT: BH = ACTIVE DISPLAY PAGE
{ignored and set to O if graphics or
monochrome mode)
RETURNED: DH = ROW LOCATION OF CURSOR
DL = COLUMN LOCATION OF CURSOR
CX = CURSOR TYPE

QUTPUT: AX = Undefined {however, we return it
unchanged)

121

READ LIGHT PEN (AH=04H)

INFUT: None

QUTPUT: AH = O if light pen not triggered, 1 if it is
DH = Character row of light pen
DL = Character coiumn of light pen
CH = Pixel row
BX = Pixel column, best estimate

SELECT ACTIVE DISPLAY PAGE (AH = O5H)
INPUT: AL = NEW ACTIVE DISPLAY PAGE
OUTPUT: AX = (?)

SCROLL ACTIVE PAGE UP (AH=06H)

INPUT: AL = LINES TO SCROLL (CLEAR WINDOW IF O)
BH = ATTRIBUTE FOR BLANK LINE(S)
CH. CL = ROW/COLUMN OF UPPER LEFT
CORNER OF WINDOW
DH, DL = ROW/COLUMN OF LOWER RIGHT
CORNER OF WINDOW

OUTPUT: None

. SCROLL ACTIVE PAGE DOWN (AH=07H)

INPUT: AL = LINES TO SCROLL (CLEAR WINDOW IF 0)
BH = ATTRIBUTE FOR BLANK LINE(S)
CH, CL = ROW/COLUMN OF UPPER LEFT
CORNER OF WINDOW
DH, DL = ROW/COLUMN OF LOWER RIGHT
CORNER OF WINDOW

OUTPUT: None
READ CHAR & ATTRIBUTE AT CURSOR POSITION (AH =08H)
INPUT: BH = ACTIVE DISPLAY PAGE
OUTPUT: AL = CHARACTER
AH = ATTRIBUTE
(not defined for graphics, however we return
an ORing of any andg all color bits set as the

attribute, a reasonable compromise)

GRAPHICS MODE READ:

122

QUTPUT: AL = CHAR READ (if recognized, else O}
AH = ATTRIBUTE (COLOR; (If recognized, else 0)
All characters above 80h are recognized if the RAM font
vector is other than O, else not

WRITE CHAR & ATTRIBUTE AT CURSOR POSITION (AH=08H)

INPUT: BH = ACTIVE DISPLAY PAGE
CXx = NUMBER OF TIMES TO WRITE
CHARACTER
AL = CHARTO WRITE
BL = CHARACTER ATTRIBUTE

OUTPUT: None
WRITE CHAR AT CURSOR POSITION (AH ==0AH)

INPUT: BH = ACTIVE DISPLAY PAGE
CX = NUMBER OF TIMES TO WRITE
CHARACTER
AL =CHAR TO WRITE
BL = Character Attribute if in a graphics mode
otherwise ignored

QUTPUT: None
SET COLOR PALETTE (AH = 0OBH)

INPUT: BH = 0 FOR BACKGROUND COLOR IN BL
1 FOR COLOR SET NUMBER IN BL
BL =BITSO-4 IFBH=0
0 FOR COLOR SET GREEN/RED/YELLOW
FBH=1
1 FOR COLOR SET CYAN/MAGENTA/WHITE
IFBH=1

WRITE DOT (AH = OCH)
INPUT: DX = ROW NUMBER (MODE DEPENDENT)
CX = COLUMN NUMBER (MODE DEPENDENT)
AL = COLOR VALUE
QUTPUT: AH =? |
READ DOT (AH = ODH)

INPUT: DX = ROW NUMBER (MODE DEPENDENT)
CX = COLUMN NUMBER (MODE DEPENDENT)

OUTPUT: AH =7
AL = COLOR VALUE

123

WRITE TELETYPE (AH=O0EH)

INPUT AL = CHARACTER TO BE WRITTEN
BL = FOREGROUND COLOR OF CHAR (USED ONLY
IN GRAPHICS MODE)
BH = REQUESTED DISPLAY PAGE (REALLY 1S
IGNORED)

OUTPUT:None
READ CURRENT VIDEO STATE (AH =OFH)
| INPUT: DS = ROM data segment
QUTPUT: AH = NUMBER OF SCREEN COLUMNS

AL = CURRENT VIDEO MODE
BH = ACTIVE DISPLAY PAGE

EQUIPMENT CHECK OUTPUT: AX = Equipment Flags
VIA S/W INT 11H
Bits of AL:
bit 4+ 7 16 1 5 1 4 1 30 20011001
I L 2 Diag Mode
> 1. BOE7 installed
> } RAM size
>} * 64KB
>} Initial Video Mode

> } O:none, 1:40 x 25 cga, 2:80x 25 cga,

3:80x 25 mga
>t #of
> } diskette drives — 1
Bits of AH:

bit 1 7 161 5 1 41 3120010

, 1— > unused
>} #of
> } COM Ports

> unused
> |: Game Adaptor present

> unused

>} # of
= } LPT ports

MEMORY SIZE CHECK VIA S/W INT 12H

OUTPUT: AX = Total Memory size in Kilobytes

124

DISKDSR ENTRY POINT RESET DISK SUBSYSTEM (AH =00H)
VIA S/W INT 13H OUTPUT: AH = DISK STATUS

READ DISK STATUS (AH=01H)
OUTPUT: AH & AL = DISK STATUS

READ SECTOR(S) (AH=02H)
WRITE SECTOR(S) (AH=03H)
VERIFY SECTOR(S) (AH = 04H)

INPUT: DL = DRIVE NUMBER (0-3}
DH = HEAD NUMBER (0-1)
CH = TRACK NUMBER (0-39)
CL = SECTOR NUMBER (1-8)
AL = NUMBER OF SECTORS TO READ, WRITE OR
VERIFY (1-8)
ES:BX = BUFFER ADDRESS

OUTPUT: AH = DISK STATUS
AL =0

FORMAT TRACK (AH=05H)

INPUT: DL = DRIVE NUMBER (0-3)
DH = HEAD NUMBER (0-1)
CH = TRACK NUMBER ({0-39)
AL = # of sectors to format to see if we have a DMA
boundary error
ES:BX = BUFFER ADDRESS 4-BYTE TRACK INFO
FIELDS (C,H,R.N):

C = TRACK NUMBER

H = HEAD NUMBER

R = SECTOR NUMBER

N = BYTES/SECTOR (00 = 128, 01 =256,

10=512, 11 =1024)
OUTPUT: AH = DISK STATUS

DISK STATUS RETURNED IN AH (IF CF = 1)

01H — lllegat Command

0ZH — Address Mark not Found
03H — Write Protect Error
04H — Sector not found

06H - No Diskette

08H — DMA Cverrun

09H — DMA Boundary Violation
10H — CRC Error

208 — FDC Error

40H — Seek Error

80H — Timeout

125

EIA DSR ENTRY POINT INITIALIZE COMM PORT (AH = 00H)

VIA S/W INT 14H .
INPUT: DX = Modem Control Register port

AL = Baud Rate and UART control parameters
BH =0, upper bits of baud rate index

OUTPUT: AH = Line Status
AL = Modem Status
Serial Port Control bits in AL Register

Bits of AL on Entry:

bt I 7 16 1 5 1 4 3 20110

‘ I—J-— > Data Word Length
= # ot stap bits

= Parily Enabled
> Even Parity

= Baud Raie Bus:
000 — §10 Baud
00t — 150 Baud
010 — 300 Baud
011 — 600 Baud
100 - 1200 Baud
101 - 2400 Baud
110 — 4800 Baud
111 - 9600 Baud

TRANSMIT A CHAR (AH=01H)
INPUT: DX = Index into device table
AL = Character to transmit

CX = Timeout value
BX =0, used as timeout counter

OUTPUT: AH = Line Status
RECEIVE A CHAR (AH=02H)
INPUT: DX = Index into device table
CX = Timeout value

BX =0, used as timeout counter

OUTPUT: AH = Line Status (error bits only, = O if OK)
AL = Received Character

126

KYBDSR ENTRY POINT

VIA S/W INT 16H

RETURN SERIAL PORT STATUS (AH=03H)

INPUT: DX = Modem Control Register port
OUTPUT: AH = Line Status
AL = Modem Status

© Serial Port Status bits returned in AX Register:
AH Register:

[. 29 [

5
l L> Data Ready
= Qverrun Error
= Purity Emror

bic I 7 I 6

> Framing Error

> Break Error

> Transmit hold register empty
> Transmil shift register empty
> Timeout Error

AH Register:

6 1 5 14 L3 120110

I—— > Delta Clear To Send
> Delta Data Set Ready
= Trailing ¢dge Ring Detcet

= Delta Receive Line Signal detect
= Clear Tu Send

= Duta Set Ready

2= Ring Indicator

> Receive Line Signal Detect

bit |7 |

READ KEYBOARD INPUT (AH =00H)
INPUT: DS = ROM data segment (0040h})

OUTPUT: AL = ASCIl CHARACTER
AH = SCAN CODE

READ KEYBOARD STATUS {AH =01H)
INPUT: DS = ROM data segment (0040n)
QUTPUT: AL = ASCIl CHARACTER
AH = SCAN CODE

7 FLAG = 1 if no character available
7 FLAG = Q if character available

127

READ SHIFT STATUS (AH = 02H)
INPUT: DS = ROM data segment (0040h)

OUTPUT: AL = SHIFT STATUS BYTE

CASSETTE INT 15H DSR

OUTPUT: AH = 86h, Error code, Carry set.
Interrupts off

KYBDSR ENTRY POINT READ KEYBOARD INPUT (AH = 00H)

VIA S/W INT 16H INPUT: DS — ROM data segment (0040h)

OUTPUT: AL = ASCIl CHARACTER
AH = SCAN CODE

READ KEYBOARD STATUS (AH=01H)
INPUT: DS = ROM data segment (0040h)
OUTPUT: AL = ASCII CHARACTER
AH = SCAN CODE

Z FLAG =1 if no character available
Z FLAG = 0 if character available

READ SHIFT STATUS (AH =02H)
INPUT: DS = ROM data segment {0040h}
OUTPUT: AL = SHIFT STATUS BYTE

PRINTER ENTRY POINT PRINT CHARACTER (AH =00H)

VIA S/W INT 17H
INPUT: AL = Character to output

DX = Index to Printer table port + 1
(the Status port)
CX = Timeout value

OUTPUT: AH = Printer Status

128

bit | 7

INITIALIZE PRINTER (AH=01H)

INPUT: DX = Printer Status Port address =
(Printer Table contents +1)

QUTPUT: AH = Printer Status
RETURN PRINTER STATUS (AH = 02H)
INPUT: DX = Index to Printer table port +1
{the Status port)
CH must have correct value of timeout flag

OUTPUT: AH = Printer Status:

I 6L 51 4131 2111401

I |—> Printer timeout
> not used
> not used

> 'O Error (Pin 15 Inverted)
> Selected (Pin 13)
= Qut of Paper (Pin 12)
> Acknowledge (Pin 10 Inverted)
= Not Busy (Pin 11 Inverted)

Notes: Pins #s are those on a 25 pin D connector

ROM BASIC ENTRY VIA S/W INT 18H

Not able to boot diskette, go to Monitor, error message or a ROM
BASIC

BOOT FROM DISKETTE VIA S/W INT 19H
R BOOT DISKETTE et

If boot attempt fails:

Fall through to user routine INT 18h, which might be a monitor or a

ROM BASIC, an error message etc.
Should INT 18h return, which is unlikely, we'll return to calier of INT

19h.

129

TIMER DEVICE
SERVICE ROUTINE —
INT 1Ah

READ CLOCK (AH = 00Ch)
INPUT: DS = ROM data segment (0040h)
OUTPUT: AL = 24-Hour Rollover flag
CX = High word of Clock Count
DX = Low word of Clock Count
SET CLOCK (AH=01h)
INPUT: DS = ROM data segment (0040h)
: CX = High word of Clock Count
DX = Low word of Clock Count
OUTPUT: AH = 0O
USER SUPPLIED KEYBOARD BREAK ROUTINE — INT 1Bh
When a CTRL + ScrLock is detected, this INT is issued. A USER Break
Routine may be invoked here. Note that this function is used by
MSDOS.
USER SUPPLIED TIMER INTERVAL TICK — INT 1Ch

This interrupt is called internally after each timer interrupt (18.2
Hz). It is initialized to point to a dummy 1RET instruction.

CRT CONTROLLER PARAMETERS — DWORD POINTER AT INT
IDH VECTOR

Default Video CRT Parameter Block

DEFAULT DISK PARAMETER BLOCK — DWORD POINTER AT
INT 1EH VECTOR

Defauit Diskette Parameter Block

EXTENDED GRAPHIC CHARACTER SET — DWORD POINTER AT
INT 1FH VECTOR

Character Generator ROM used in Graphic mode for characters 80H
to OFFh.

130

Section 4.3

Janus.Library

PREFACE

THE PUBLIC ROUTINES
Contents

Descriptions

This is a brief description of the janus code. This code supports low
level access to the *janus” system — the link between a PC and an

Amiga.

AllocJanusMem
CheckJanusint
CleanupJanusSig
FreeJanusMem
GetJanusStart
GetParamOffset
JBCopy
JanusLock
JanusMemBase
JanusMemToOffset
JanusMemType
JanusUnLock
SendJanusint
Set JanusEnable
SetJanusHandler
SetJanusRequest
SetParamOffset
SetupJanusSig

The code is packaged as a library (specifically *janus.library”), which

is loaded during Autoconfig procedure.

Al routines that return a value return it in DO. There is a link library
for C routines, “jlib.lib™.

oldHandler = SetJanusHandler(jintnum, intserver)

Al

This routine sets up an interrupt handler for a particular janus inter-
rupt. The old interrupt is returned. A null means that there is no in-
terrupt handler. If there is no interrupt handler then interrupts no

will be processed for that jintnum.

oldEnable = SetJanusEnable{ jintnum, newvalue)

131

D1

B

Each jintnum may be individually enabled or disabled {this is in addi-
tion to the control of setting the interrupt handler to NULL). If the
interrupt is disabied then requests that are received will not generate
interrupts. These requests may be detected via SetJanusRequest.

If newwvalue is O then the interrupt is disabled. if it is 1 then the inter-
rupt is enabled. All other values are reserved.

This routine will generate an interrupt if it an interrupt is enabled
that has a pending request. This does not currently happen until the
next hardware interrupt occurs.

oldRequest = SetJanusRequest(jintnum, newvalue)
' DO 03]

This routine sets or clears an interrupt request for jintnum. If new-
value is zero then the request is cleared. If newvalue is one then the
request is set. In either case the old value of the request is returned.

Setting a request will generate an interrupt (if it is enabiled). This
does not currently happen.

SendJanusint(jintnum)
DO

This call is useful for “system” requests — e.g. those requests not di-
rectly defined by the hardware. The call marks the request in the sys-
temn interrupt area and then posts a hardware interrupt to the pc.

CheckJanusInt(jintnum)
DO

This cail returns the status byte from the interrupt area. It can be
used to tell if the pc has noticed the interrupt yet. A value of JNOINT
(Sff) means no interrupt is pending (which probably means that the
pc has already processed it). JSENDINT ($7f) means that the inter-
rupt is pending. Anything else should be treated with suspicion.

ptr = AllocJanusMem(size, type)
DO D1

This routine allocates memory from the parameter or buffer mem-
ory free pools, and returns a 68000 addressable pointer to the
memory. It allocates “size™ bytes, or returns NULL if there was not
enough memaory.

The type field is used to determine which pool of memory is desired.
It should be either MEMF_PARAMETER or MEMF_BUFFER. In addi-
tion, you may specify what sort of memory access the pointer should
refer to. The four choices are MEM_BYTEACCESS, MEM_WORD-

132

ACCESS. MEM_GRAPHICACCESS, or MEM_IOACCESS. See the
hardware description for the meaning of these access methods if
you do not already Know.

FreeJanusMem(ptr, size)
A1 DO

The specified memory is returned to the free pool. Some modest er-
ror checking is done, and the system will Alert if there is a problem.

ptr = JanusMemBase(type)
DO

The base of the memory referred to by the type specifier is returned.
See AllocJanusMem for a (very) brief description of type.

type = JanusMemType(ptr)
DO

The type of the pointer is returned. “Unpredictable results™ will oc-
cur if ptr points to neither buffer memory nor parameter memory.

offset = JanusMemToOffset(ptr)
DO

If ptr points to buffer or parameter memory, the offset from the
start of that memory to ptr will be returned. This is the value that
should be fed to SetParamOffset() if this is a parameter block.

offset = GetParamOffset{ jintnum)
DO

The parameter offset for interrupt jintnum is returned. The system
does not interpret this number, but by convention a SFfff means that
no parameter block has been set up.

oldOffset == SetParamOffset{ jintnum, offset)
Do D1

The parameter offset for jintnum is set to the bottom sixteen bits of
offset. The previous offset is returned. The system does not inter-
pret this number, but by convention a Sffff means that no parameter
block had previously been set up.
ptr = GetJanusStart()
The base of the janus board is returned.
setupSig = SetupJanusSig
(jintnum, signum, paramsize, paramtype)

DO D1 D2 D3

133

This routine does the “'standard™ things that most users of the janus
system would want. It is concetvable that most people who use the
Jjanus board will use only this routine and CleanupJanusSig().

The main purpose is to set up an interrupt handler for your inter-
rupt, and translate this into an exec signal that will be sent to your
task. This allows you to ignore all the complexities of writing inter-
rupt code.

You specify the jintnum to use as the interrupt number and the sig-
nal number (signum) to be sent to you. Jintnum should (for now) be
gotten via the include file services.hi]. Signum will most cften be
gotten via AllocSignal(-1), which allocates an unused signal.

[n addition to setting up a way to get interrupts, the call can set up a
parameter ared. It will allocate paramsize bytes of type paramtype,
and set up the parameter area to point to them.

There is some error checking done while all this is going on. If sig-
num is -1 the call fails (-1 is the error return from AllocSignal...). If
there is already an interrupt handler then the call fails. If paramsize
is non-zero and there is already a parameter area the call fails. If it
cannot allocate enough memory the call fails.

The call returns a NULL if it fails. If it succeeds then a pointer to a
SetupSig structure is returned. This structure is defined in setup-

sig.[hi].
CleanupJanusSig(setsupSig)
AO

This routine undoes everything that SetupJanusSig does.

JanusLock(ptr)
AD_ .

Gain a janus lock (e.g. a lock on a memory list). You must not keep
this leck for a long time — keep it just long enough to manipulate
the data structure associated with the lock, and don't go to sleep.

JanusUnLock({ ptr)
AO

Release a janus lock.

JBCopy(source, designation, length)
AO A1 DO

Copy arbitratily aligned memory as efficiently as possible with the
_ processor.

134

INCLUDE FILES

LISTINGS

janus.[hi]:
gives interface to janus.library. All definitions in this file are
amiga specific. The most useful thing in this file are the
definitions for janus memory allocation types

janusreg.[hi]:
hardware constants. Most people should not need this. If you
do, we need to hide more information,

Jjanusvar.[hi}:
the shared data structure between the amiga and the pc. Once
again, you should not need direct access to these routines. We
have tried to provide interface routines to do all the normal

things.

i86block.i:
command blocks for calling pc’s interrupt’s directly and for the

hard disk.

services.[hi]:
hard coded constants for interrupt numbers. Eventually these
numbers will be gotten at run time, but for now they are
constants. These numbers correspond to the jintnum”
parameters below.

setupsig.[hi]:
data structure for SetupJanusSig() call.

i86block.i — interface definitions between amiga and
commodore-pc
Copyright © 1986, Commodore-Amiga Inc.. All rights reserved

[FND JANUS_I86BLOCK_I
JANUS_IBEBLOCK.I SET 1

. All registers in this section are arranged to be read and written

- from the WordAccessOffset area of the shared memory. If you really
- need to use the ByteAccessArea, all the words will need to be byte
: swapped.

135

; SyscallB6 — how the 8086/8088 wanlts its parameter block arranged:

STRUCTURE Syscall86,0

UWORD
UWORD
UWORD
UWORD
UWORD
UWORD
UWORD
UWORD
UWORD
UWORD
UWORD

LABEL

J ; Syscallb8 —

S86_AX

s86_BX

s86_CX

s86_DX

s86_S]

$86_D5

$86_Di

s86_ES

s86_BP

s86_PSW

S86_INT : 8086 int # that will be
called

Syscall86_SIZEOF

the way the 68000 wants its parameters arranged:

STRUCTURE Syscall68,0

ULONG
ULONG
ULONG
. ULONG
ULONG
ULONG
ULONG
ULONG
ULONG
ULONG
ULONG
ULONG
ULONG
ULONG
ULONG
ULONG
ULONG

ULONG
ULONG

ULONG
ULONG

UWORD

UWORD
UWORD

s68_D0

s68_D1

s68_D2

s68_D3

s68_D4

s68_D5

s68_D6

s68_D7

s68_A0

s68_A1

s68 AZ

s68 A3

s68 A4

s68_AS

s68_A6 :

s68_PC : P to start execution from

s68_ArgStack ; array to be pushed onto
stack

$68_ArgLength : number of bytes to be

' pushed (must be even)

s68_MinStack ; minimum necessary stack
{0 = use default)

s68_CCR ; condition code register

s68_Process ; ptr to process for this
block.

s68_Command ; special commands: see
below

s68 Status :

s68_SigNum ; internal use: signal to

wake up process

136

LABEL Syscali68_SIZEOF

S68COM_DOCALL EQUOG : normal case _ jsr to speci-
fied Program cntr
S68COM_REMPROC EQU 1 ; Kill process

S68COM_CRPROC EQU 2 ; create the process, but do
: not cail anything

; Disk request structure for raw amiga access to 8086's disk
; goes directly to PC BIOS (via PC int 13 scheduler):

STRUCTURE DskAbsReq.0

UWORD dar_FktCode : bios function code
(see ibm tech ref)
UWORD dar_Count - sector count
UWORD dar_Track : cylinder #
UWORD dar_Sector ; sector #
UWORD dar_Drive ; drive
UWORD dar_Head ; head
UWORD dar_Offset : offset of buffer in
MEMF_BUFFER memory
UWORD dar_Status ; return status

LABEL DskAbsReq SIZEOF
; Definition of an AMIGA disk partition. returned by info function:

STRUCTURE DskPartition,0

UWORD dp_Next : 8088 ptr to next part.
0 -=> end of list

UWORD dp_BaseCyl ; ¢yl # where partition
starts

UWORD dp-EndCyl ; last cyclinder # of this
partition

UWORD dp_DrvNum : DOS drive number {80H,
81H, ..)

UWORD dp.NumHeads ; number of heads for this
drive

UWORD dp_NumSecs ‘ : number of sectors per

track for this drive
LABEL DskPartition_SIZEQF

: Disk request structure for higher level Amiga disk request to 8086:

STRUCTURE AmigaDskReq.0

UWORD adr_Fnctn : function code (see below)

UWORD adr_Part ; partition number (O is
first partition)

ULONG adr_Offset : byte offset into partition

ULONG adr_Count ; number of bytes to
transfer

137

UWORD adr_BufferAddr ; offset into MEMF-
_BUFFER memory for
buffer

UWORD adr_Err : return cede, O if all OK

LABEL AmigaDskReq_SIZEOF

; Function codes for AmigaDskReg adr_Fnctn word:

ADR_FNCTNINIT EQU O ; given nothings, sets adr_
: Part to # partitions
ADR_FNCTN_READ EQU 1 :given partition, offset,
count, buffer
ADR_FNCTN_WRITE EQU 2 ;given partition, offset,
count, buffer
ADR.FNCTN_SEEK - EQU 3 ; given partition, offset
ADR_FNCTN_INFO EQU 4 ; given part, buff adr, cnt,

copys in a DskPartition
structure. cnt set to actual
number of bytes copied.

; Error codes for adr.Err, returned in low byte:

ADR_ERR.OK . EQU 0 :noerror
ADR_ERR_OFFSET EQU 1 ; offset not on sector
boundary
ADR_ERR_COUNT EQU 2 . dsk_count not a multiple
of sector size
ADR_ERR_PART EQU 3 ; partition does not exist
ADR_ERR_FNCT EQU 4 ; illegal function code
ADR_ERR_EOF EQU 5 :offset past end of
partition
ADR_ERR_MULPL EQU 6 ; multiple calis while

pending service

: Error condition from IBM-PC BIOS, returned in high byte:

ADR_ERR_SENSE_FAIL EQU Sff
ADR_ERR_UNDEF_ERR EQU $bb
ADR_ERR_TIME.QUT EQU $80
ADR_ERR_BAD_SEEK EQU 540
ADR_ERR_BAD.CNTRLR EQU $20
ADR_ERR_DATA_CORRECTED EQU $11 ;data corrected
ADR_ERR_BAD_ECC EQU 310
ADR_ERR_BAD_TRACK EQU 3$0b
ADR_ERR_DMA_BOUNDARY EQU $09
ADR_ERR_INIT_FAIL EQU $07
ADR_ERR_BAD_RESET EQU $05

ADR_ERR_RECRD_NOT_FOUND EQU $04
ADR_ERR_BAD_ADDR.MARK EQU 302
ADR_ERR_BAD_CMD EQU 301

ENDC LJANUS_I86BLOCK_I
138

janus.i — software conventions for janus.i
Copyright © 1986, Commodore-Amiga Inc., All rights reserved

IFND EXEC_TYPES_I
INCLUDE “exec/types.i”
ENDC EXEC_TYPES.

IFND EXEC_LIBRARIES I
INCLUDE "“exec/libraries.i”
ENDC EXEC_LIBRARIES. |

IFND EXEC_INTERRUPTS.I
INCLUDE ‘“exet/interrupts.i”
ENDC EXEC_INTERRUPTS.I

; JanusResource — an entity which keeps track of the reset state of
the 8088, If this resource does not exist, it is assumed the 8088 can
be reset.

STRUCTURE JanusResource, LN_SIZE

APTR jr_BoardAddress : address of JANUS board
UBYTE jr_Reset : non_zero indicates 8088
is held reset

LABEL JanusResource_SIZEQF
: As a coding convenience, we assume a maximum of 32 handlers.
: People should avoid using this in their code, because we want 10
: be able to relax this constraint in the future. All the standard

: commands’ syntactically support any number of interrupts, but
: the internals are limited to 32.

MAXHANDLER EQU 32

; JanusAmiga — amiga specific data structures for janus profect:

STRUCTURE JanusAmiga,LIB_SIZE

ULONG JjaIntReq : software copy of out-
standing requests

ULONG ja_IntEna : : software copy of enabled
interrupts

APTR ja_ParamMem : ptr to (word arranged)
param mem

APTR ja_loBase ; ptr to base of io register
region

APTR ja_ExpanBase ; ptr to start of shared
memory

APTR ja_ExecBase : ptr to exec library

APTR ja_DOSBase : ; ptr to DOS library

APTR JjaSeglList : holds a pointer to our

code segment

139

APTR Jja_IntHandlers
STRUCT Jja.IntServer,IS_SIZE

; base of array of int server
ptrs
: INTB_PORTS server

STRUCT JjaReadHandler IS_SIZE ; JSERV_READAMIGA

LABEL JanusAmiga SIZEQF

handler

; Hide a byte quantity in the lib_pad field

" jaSpuriousMask EQU LIB pad

; Magic constants for memory allocation:

MEM_TYPEMASK EQU S0Off
BITDEF MEM.PARAMETER,O
BITDEF MEM,BUFFER.1

MEM_ACCESSMASK EQU $3000
MEM_BYTEACCESS EQU 50000
MEM_WORDACCESS EQU $1000
MEM_GRAPHICACCESS EQU $2000
MEM_IOACCESS EQU $3000

TYPEACCESSTOADDR EQU 5

; 8 memory areas

; parameter memory

; buffer memory

; bits that participate in

access types

; return base suitable for byte

access

; return base suitable for

word access

; return base suitable for

graphic access

; return base suitable for

i0 access

; # of bits to change access

mask into addr

; Macro to lock access to janus data structures from PC side:

LOCK MACRO ; (1 — effective address of lock byte)
begin@
tas 1
beg.s exit@
nop
nop
bras begin@
. exiti@:
endm
UNLOCK - MACRO : { 1 — effective address of lock byte)
move.b #0.1
ENDM
JANUSNAME ~ MACRO
dcb ‘janus.library’,0
ENDM

janusreg.i — janus hardware registers (from amiga point of view)

140

Copyright © 1986, Commodore-Amiga Inc., All rights reserved.

: Hardware interrupt bits (all bits are active low)

BITDEF JINTMINT,O : mono video ram written to

BITDEF JINT,GINT.1 ; color video ram written to

BITDEF JINT.CRT1INT.2 ;mono video control registers changed
BITDEF JINT,CRTZINT.3 :color video control registers changed
BITDEF JINT.ENBKB.4 : keyboard ready for next character
BITDEF JINT,LPT1INT,5 ; parallei control register

BITDEF JINT.COMZINT.6 ;serial control register

BITDEF JINTSYSINT,7 ;software int request

: The Amiga side of the Bridgeboard has four sections of its address
- space. Three of these parts are different arrangements of the same
- memory. The fourth part has the specific amiga accessible /0

; registers (jio—7?7). The other three parts all contain the same

- data. but the data is arranged in different ways: Byte Access

: lets the 68k read byte streams written by the 8088, Word Access
- lets the 68k read word streams written by the 8088, and Graphic
: Access lets the 68k read medium res graphics memory in a more
. efficient manner (the pc uses packed two bit pixels: graphic

; access rearranges these data bits into two bytes, one for each bit

: plane).

ByteAccessOffset EQU $00000
WordAccessOffset EQU $20000
GraphicAccessOffset EQU $40000
loAccessOffset EQU $60000

- Within each bank of memory are several sub regions. These are the
; definitions for the sub regions:

BufferOffset EQU $00000
ColorOffset EQU $10000
ParameterOffset EQU $18000
MonoVideoOffset EQU $1c000
loRegOffset EQU $1e000
BufferSize EQU $10000
ParameterSize EQU 504000

These are the definitions for the io registers. All the registers are
byte wide and the address are for Byte Access addresses:

jio-KeyboardData EQU $061f ; data that keyboard will read
jio_SystemStatus EQU $003f : pc only register

jio_NmiEnable " EQU $005f : pc only register
jio_.Com2XmitData EQU $007d

jio_Com2ReceiveData EQU $009d
jio.Com2IntEnableW EQU $00bd

141

Jjio_.ComZIntEnableR
Jjio_ComzDivisorLSB
jio_Com2ZDivisorMSB
Jio_ Com2IntID
Jjio_-ComZ2LineCntrl
jio_ComZModemCntrl
Jio ComZLineStatus
jio_.ComZModemStatus

jio_Lpt1Data

jio_Lpt1Status
jio_Lpt1Control

Jio—.MoncAddressind
Jio_MonoData
Jjio_MonoControiReg

Jjio_ColerAddressind
Jjio_ColorData
Jio_ColorControlReg
jio_ColerSelectReg
jio_ColorStatusReg

Jjio_DisplaySystemReg

jio_IntReq
jio_PcIntReq

jio_ReleasePcReset

jlo_RamSize
jio_IntEna
jio_PclIntGen
Jio_Control

jic_RamBaseAddr

EQU $00dd
EQU $007f
EQU $009f
EQU SOOff
EQU S011f
EQU $013f
EQU $O15f
EQU $017f

EQU $019f
EQU $01bf
EQU $01df

EQU S01ff
EQU 502at
EQU So2ff

EQU $021f
EQU $02c1
EQU $023f
EQU $025f
EQU $027f

EQU $029f

EQU $1ff1
EQU $1ff3
EQU $1ff5
EQU $1fF7
EQU $11f9
EQU $1ffb
EQU $1ffd
EQU $1fff

: data byte
: see equates below
; see equates below

; current index into crt data regs
; every other byte for 16 registers

; eurrent index into crt data regs
; every other byte for 16 registers

: read clears, pc ->> amiga ints

; I/0, amiga -> pc ints

: T/, strobe release pc's reset

; I/, give ram addresses

: I/w, enables pc int lines

; W/o, bit = = 0 -> cause pcint
: w/o, random control lines

; T/W, sets expansion ram base

address

: Now the magic bits in each register (and boy, are there a lot of

themi)

» Bits for Lpt1Status register
BITDEF JPCLS.STROBE.O
BITDEF JPCLS,AUTOFEED,1
BITDEF JPCLS.INIT .2
BITDEF JPCLS,SELECTIN.3

BITDEF JPCLS,IRQENABLE.4

: Bits for Lpt1Control register

BITDEF

JPCLC,ERROR,3

BITDEF

JPCLC.SELECT 4

; active 1

BITBEF JPCLC.NOPAPER,S
BITDEF JPCLCACK,6
BITDEF JPCLC.BUSY.7

; Bits for PcintReq, FclntGen registers

BITDEF JPCINT,IRQ1,0 : active high
BITDEF JPCINT,IRQ3.1 ; active low
BITDEF JPCINT,IRQ4.2 ; active low
BITDEF JPCINT.IRQ7.3 ;active low

; PC side interrupts

JPCKEYINT EQU Sff : keycode available
JPCSENDINT EQU $fc ; system request
JPCLPTIINT EQU $f6 ; printer acknowledge

; Bits for RamSize
BITDEF JRAMEXISTS,0 ;unset if there is any ram at all
BITDEF JRAM,2MEG, 1 : set if 2 meg, clear if 1/2 meg

; Bits for control register
BITDEF JCNTRLENABLEINT.O :enable amiga interrupts
BITDEF JCNTRLDISABLEINT,1 ; disable amiga interrupts
BITDEF JCNTRLRESETPC.2 ; reset the pc. remember to strobe
;. ReleasePcReset afterwards
BITDEF JCNTRLCLRPCINT.Z :turn off all amiga->>pc ints (except
keyboard

; Constants for sizes of various janus regions

JANUSTCTALSIZE EQU 512*1024 ; 1/2 megabyte
JANUSBANKSIZE EQU 128*1024 ; 128K per memory bank
JANUSNUMBANKS EQU 4 : four memory banks
JANUSBANKMASK ~ EQU $60000 ; mask bits for bank region

Jjanusvar.i—the software data structure for the janus board
Copyright © 1986, Commodore-Amiga Inc., All rights reserved

~; All hytes described here are described in the byte order of the
; 8088. Note that words and longwords in these structures will be
; accessed from the word access space to preserve the byte order in
; a word — the 8088 will access longwords by reversing the words :
: like @ 68000 access to the word access memory

; JanusMemHead — a data structure roughly analogous tc an exec

; mem chunk. It is used to keep track of memory used between the
: 8088 and the 68000.

143

STRUCTURE JanusMemHead,0
UBYTE jmh_Lock : lock byte between processors
UBYTE jmh_padO
APTR jmh.68000Base ;rptr’s are relative to this
UWORD jmh_8088Segment ; segment base for 8088

RPTR jmh_First ; offset to first free chunk
RPTR jmh_-Max : max allowable index
UWORD jmh_Free ; total number of free bytes -1

LABEL JanusMemHead SIZEQOF

STRUCTURE JanusMemChunk,0
RPTR jmc_Next ., rptrto next free chunk
UWORD jmc_Size ;size of chunk -1
LABEL JanusMemChunk SIZEOF

STRUCTURE JanusBase,0
UBYTE jb_Lock ; also used to handshake at 8088 reset
UBYTE jb.8088Go ;unlocked to signal 8088 to initialize
STRUCT jb_ParamMem,JanusMemHead_SIZEOF
STRUCT jb_BufferMem,JanusMemHead SIZEOF
RPTR jbnterrupts
RPTR jb_Parameters
UWORD jb_Numinterrupts
LABEL JanusBase SIZEQF

; constant to set to indicate a pending software interrupt
JSETINT EQU S7f -

FUNCDEF SetJanusHandler
FUNCDEF SetJanusEnable
FUNCDEF SetJanusRequest
FUNCDEF SendJanusint
FUNCDEF CheckJanusint
FUNCDEF AllocJanusMem
FUNCDEF FreeJanusMem
FUNCDEF JanusMemBase
FUNCDEF JanusMemType
FUNCDEF JanusMemToOffset
FUNCDEF GetParamOffset
FUNCDEF SetParamOffset
FUNCDEF GetJanusStart
FUNCDEF SetupJanusSig
FUNCDEF CleanupJanusSig
FUNCDEF JanusLock
FUNCDEF JanusUnLock
FUNCDEF JBCopy

144

memrw.i—parameter area definition for access to other
processors mem
Copyright © 1986, Commodore-Amiga Inc., All rights reserved

IFND JANUS_MEMRW.I
JANUS_.MEMRW_.I SET 1

; this is the parameter block for the JSERV_READPC and JSERV_
: READAMIGA; services — read and/or write the other processors
: memory.

STRUCTURE MemReadWrite,0
UWORD mrw_Command ; see below for list of commands

UWORD mrw_Count ; number of bytes to transfer
ULONG mrw_Address ; local address to access. This is
' ; amachine pointer for the 68000, and
a segment/offset pair for the 808x.

The address is arranged so the native
processor may read it directly.

UWORD mrw_Buffer ; The offset in buffer memory for the
; other buffer.

UWORD mrw_Status ; See below for status.

LABEL MemReadWrite_SIZEOF

; Command definitions:

MRWC_NOP EQU O . do nothing — return OK status
code

MRWC_READ EQU 1 ; xfer from address to buffer

MRWC_WRITE EQU 2 ; xfer from buffer to acddress

MRWC_READIO EQU 3 ; only on 808x — read from 10
space

MRWC_WRITEIO EQU 4 ; only on 808x — write to 10 space
MRWC_WRITEREAD EQU 5 . write from buffer, then read back

; Status definitions:
MRWSINPROGRESS EQU Sffff ; we've noticed command and
are working on it

MRWS_OK EQU $0000 : completed OK

MRWS.ACCESSERR EQU $0001 ; some sort of protection
violation

MRWS_BADCMD EQU $0002 ; command that the server
doesn't understand

ENDC
IFND JANUS SERVICES|
JANUS SERVICES.I EQU 1

145

memrw.i—parameter area definition for access to other
processors mem
Copyright © 1986, Commodore-Amiga I[nc., All rights reserved

- this is the table of hard coded services. Other services may exist
: that are dynamically allocated via AllocJanusService.

: Service numbers constrained by hardware:

JSERV_MINT EQU O ;monochrome display written to

JSERV_GINT EQU 1 ;color display written to

JSERV_CRT1INT EQU 2 ;mono display’s control registers
changed

JSERV_CRTZINT EQU 3 :color display’s control registers
changed

JSERV_ENBKB EQU 4 . keyboard ready for next character

JSERV_LPT1INT EQU 5 ;parallel control register

JSERV_COMZINT EQU 6 ;serial control register

; hard coded service numbers

JSERV_PCBOOTED EQU 7 ;PC is ready to service soft
interrupts

JSERV_SCROLL EQU 8 ;PCisscrolling its screen
JSERV_HARDDISK EQU 9 :Amiga reading PC hard disk
JSERV_READAMIGA EQU 10 ; PC reading Amiga mem
JSERV_READPC EQU 11 ;Amiga reading PC mem
JSERV_AMIGACALL EQU 12 : PC executing Amiga subroutine
JSERV_PCCALL EQU 13 ; Amiga causing PC interrupt
JSERV_NEWASERV EQU 14 ;PC initiating Amiga side of a new
service
JSERV_NEWPCSERV EQU 15 ; Amiga initiating PC side of a new
service

ENDC JANUS_SERVICES_]

IFND JANUS_SETUPSIGLI
JANUS_SETUPSIG.I EQU 1

setupsig.i—data structure for SetupJanusSig() routine
Copyright © 1986, Commodore-Amiga Inc., All rights reserved

IFND EXEC_TYPES_I
INCLUDE ‘exec/types.i’

ENDC

[FND EXEC_INTERRUPTS.]
INCLUDE ‘exet/interrupts.i
ENDC

146

STRUCTURE SetupSig.IS_SIZE

APTR ss_TaskPtr
ULONG ss_SigMask
APTR ss_ParamPtr

ULONG ss_ParamSize
UWORD ss_JanusintNum
LABEL SetupSig_SIZEOF

ENDC

janus.h—software conventions for janus subsystem
Copyright © 1986, Commodore-Amiga Inc., All rights reserved

#ifndef EXEC_TYPES.I
#include “exec/types.n”
#endif EXEC_TYPES._I

#ifndef EXEC_LIBRARIES_I
#include “exec/libraries.n’”
#Fendif EXEC_LIBRARIES_I

#ifndef EXEC_INTERRUPTS.I
#include “exec/interrupts.h”
#endif EXEC_INTERRUPTS.I

/‘*

** As a coding convenience, we assume a maximum of 32 handlers.

** People should avoid using this in their code, because we want

** 10 be able to relax this constraint in the future. All the

** standard commands’ syntactically support any number of
interrupts,

** but the internals are limited to 32.

*/

#define MAXHANDLER 32
typedef UWORD RPTR;
/* JanusAmiga — amiga specific data structures for janus project */

struct JanusAmiga [

struct Library ja_LibNode;

ULONG ja_IntReq: . /* software copy of outstanding
requests */

ULONG ja_IntEna; /* software copy of enabled

interrupts */
UBYTE *ja_ParamMem; /* ptr to (byte arranged) param
mem */

147

UBYTE *ja_loBase; /* ptr to base of io register region */
UBYTE *aExpanBase; /* ptr to start of shared memory */
APTR ja_ExecBase; /* ptr to exec library */
APTR ja_ SeglList; /* ptr to loaded code */
struct Interrupt **ja_IntHandlers:/* base of array of int
handler ptrs */
struct Interrupt ja_IntServer; /* INTB_PORTS server */
struct Interrupt ja_ReadHandlery/* JSERV_READAMIGA
handler */

|5

/* hide a byte field in the lib_pad field */

#define ja.SpurriousMask lib_pad

/* magic constants for memeory allocation */

#define MEM_TYPEMASK Ox0Off /* 8 memory areas */
#define MEMB_PARAMETER (0) /* parameter memory */
#define MEMB_BUFFER (1) /* buffer memory */

#define MEMF_PARAMETER (1<<0) /* parameter memory */
#define MEMF_BUFFER (1<<<1) /* buffer memory */

#define MEM_ACCESSMASK ~ 0x3000 /* bits that participate in
access types */

#define MEM_BYTEACCESS Ox0000 /* return base suitable for
byte access */

#define MEM_.WORDACCESS 0x1000 /* return base suitable for
word access */

#define MEM_GRAPHICACCESSOx2000 /* return base suitable for
graphic access */

#define MEM_IOACCESS 0x3000 /* return base suitable for
o access ¥/

#define TYPEACCESSTOADDR 5 /* # of bits to turn access
: - : : mask to addr */

#define JANUSNAME “janus.library”

janusreg.h — janus hardware registers (from amiga point
of view)
Copyright © 1986, Commodore Amiga Inc., All rights reserved

/* hardware interrupt bits all bits are active low */

#define JINTB_MINT {0) /* mono video ram written to */

#define JINTB.GINT (N /* color video ram written to */

#define JINTB.CRT1INT (2) /* mono video controel registers
changed */

#define JINTB.CRTZINT (3) * color video control registers
changed */

#define JINTBLENBKB (4) /™ Keyboard ready for next
character */

148

#define JINTB LPTI1INT (5) /* parallel control register */
#define JINTB.COMZINT (6) /* serial control register */
#define JINTB.SYSINT (7) /* software int request */

#define JINTF_MINT (1<<0)
#define JINTF.GINT (1<<1)
#define JINTE_CRTTINT (1<<<2)
#define JINTE_CRT2INT (1<<3)
#define JINTF_ZENBKB (1<<4)
#define JINTF_LPT1INT (1<<5)
#define JINTF_COM2INT (1<<6)
(

#define JINTF_SYSINT 1<<7)

/*

** The amiga side of the janus board has four sections of its address
space.

** Three of these parts are different arrangements of the same
memory. The

** fourth part has the specific amiga accessible 10 registers (jio—
?7?).

** The other three parts all contain the same data, but the data is
arranged

** in different ways: Byte Access lets the 68K read byte streams
written

** hy the 8088, Word Access lets the 68k read word streams
written by the

** 8088, and Graphic Access lets the 68k read medium res graphics

memory

** in a more efficient manner (the pc uses packed two bit pixels;

graphic

* access rearranges these data bits into two bytes, one for each bit

plane).

*/

#define ByteAccessOffset 0x00000

#define WordAccessOffset 0x20000

#define GraphicAccessOffset 0x40000

#define loAccessOffset Ox60000

#define jio_IntReg Ox1ff1 /* read clears, pc -> amiga
ints */

#define jio_PcIntReg Ox1ff3 /* r/o, amiga -> pc ints */

#define jio_ReleasePcReset Ox1ff5 /* r/o, strobe release pc's
reset */

#define jio_RamSize Ox1ff7 /* r/o, give ram addresses */

#define jio_IntEna Ox1ff9 /* r/w, enables pc int lines */

#define jio_PcintGen Ox1ffb /* w/o, bit = = 0 -> cause
pc int */

#define jio_Control Ox1ffd /* w/o, random control fines
*/

149

#define jio.RamBaseAddr Ox1fff /* r/w, sets extra ram base
address */

/* now the magic bits in each register (and boy, are there a lot of
themi) */

/* bits for PcintReq, PclntGen registers */

#define JPCINTB_IRQ1 (8)] /* active high */
#define JPCINTB_IRQ3 (1) /* active low */
#define JPCINTB_IRQ4) /* active low */
#define JPCINTB_IRQ7 3) /* active low */

#define JPCINTF_IRQ1 {)
#define JPCINTF_IRQ3 (1<<1)
#define JPCINTF_IRQ4 {)
#define JPCINTF_IRQ7 ()

/* pc side interrupts */

#define JPCKEYINT (Oxff) /* keycode available */
#define JPCSENDINT (Oxfc) /* system request */
#define JPCLPT1INT (Oxf6) /* parallel port acknowiedge */

/* bits for RamSize */

#define JRAMB_EXISTS (0) /* set if there is any ram at
all */

#define JRAMB_ZMEG (1) /* set if 2 meg, clear if 1/2
meg */

#define JRAMF_EXISTS (1<<0)
#define JRAMF2MEG ~ (1<<1)

/* bits for control register */
#define JCNTRLB_ENABLEINT (0) /* enable amiga interrupts */
#define JCNTRLB_DISABLEINT (1) /* disable amiga interrupts */
#define JCNTRLB_LRESETPC (2) /* reset the pc. remember to
strobe */
/* ReleasePcReset afterwards */
#define JCNTRLB.CLRPCINT (3) /* turn off all amiga->pc ints */

/* constants for sizes of various janus regions */
#define JANUSTOTALSIZE (512*1024) /* 1/2 megabyte */
#define JANUSBANKSIZE (128*1024) /* 128K per memory

bank */

#define JANUSNUMBANKS 4 /* four memory
banks */

#define JANUSBANKMASK (0x60000) /* mask bits for bank
region ¥/

150

janus.h—the software data structures for the janus board

Copyright © 1986, Commodore Amiga Inc., All rights reserved

/* all bytes described here are described in the byte order of the

* 8088. Note that words and longwords in these structures will be

* accessed from the word access space to preserve the byte order in
* a word — the 8088 will access longwords by reversing the words:
* like a 68000 access to the word access memaory.

*/
/* JanusMemHead — a data structure roughly analogous to an exec

mem chunk. -

* |t is used to keep track of memory used between the 8088 and the

£68000.

*

struct JanusMemHead (
UBYTE jmh_Lock; /* lock byte between
processors */
UBYTE jmhpadO:
APTR jmh.68000Base; /* rptr’s are relative to this */
UWORD jmh_80885egment:/* segment base for 8088 */

RPTR jmh_First; * offset to first free chunk */

RPTR jmh_Max; /* max ailowable index */

UWORD jmh_Free; /* total number of free
bytes -1 */

IR

/* JanusMemChunk — keep track of individualy freed chunks of

memory.
* Memory Chunks are longword aligned in this memory.
*

struct JanusMemChunk {

RPTR jmc Next: /* tptr to next free chunk */
UWORD jmc_Size; /* size of chunk -1*/

|5

#ifdef undef

this stuff is saved for future use, but is not yet thought out
/* JanusList — an RPTR/Exec style list header.
*/
struct JanusList [
RPTR jl—Head;

RPTR j—Tail;
RPTR jl—TailPred;
UBYTE jl—Lock: /* lock byte between

processors

151

*/UBYTE jl-—padO;
I

/* JanusNode — an RPTR/Exec style node.

*/
struct JanusReqglist
[RPTR jn—Succ;
RPTR jn—->Pred;
RPTR jn—Name;
UWORD jn—Reqlndex; /* this” index into jo—
CommRegs */
IE
#endif undef

/* JanusBase — the master data table for the janus project. It is
located
* at the bottom of parameter memory.*/

struct JanusBase [
UBYTE jb—Lock; /* lock byte between
processors */
UBYTE jb—8088Go;
struct JanusMemHead /¥ free mem pool for param

jb—ParamMem; mermory
struct JanusMemHead /* free mem pool for buffer
memory */
jb—BufferMem;

RPTR jb—Interrupts; /* (UBYTE *) of request
byte-pairs */
. RPTR jb—Parameters; /* array of ptrs to parameter
areas */
UWORD jb-—Numinterrupts; /* number of interrupts &
parameters */];

/* constant to set to indicate a pending software interrupt
*/#define JSETINT Ox7f

memrw.i—parameter area definition for access to other
processors mem
Copyright © 1986, Commodore-Amiga Inc., All rights reserved

#ifndef JANUS_MEMRW_H
#define JANUS.MEMRW_H

/*
** this is the parameter block for the JSERV_READPC and JSERV_

** READAMIGA services — read and/or write the other processors

memary.
*/

152

struct MemReadWrite [

UWORD mrw_Command:/ see below for list of commands */
UWORD mrw_Count; /* number of bytes to transfer */
ULONG mrw_Address; /* local address to access. This is */

/#
/*
/*
/*
/*
I’*

a machine pointer for the */
68000, and a segment/offset */
pair for the 808X. The ad- */
dressed is arranged so the */
native processor may read it */
directly. */

UWORD mrw_Buffer; /* The offset in buffer memory for */

/‘*

the other buffer. */

UWORD mrw_Status; /* See below for status. */

I:

/* cornmand definitions */
#define MRWC_NOP 0

#define MRWC_READ 1
#define MRWC_WRITE 2
#define MRWC_READIO 3
#define MRWC_WRITEIO 4
#define MRWC_WRITEREAD 5

/* status definitions */
#define MRWS_INPROGRESSSffff

/* do nothing — return OK
status code */
/* xfer from address to buffer */

/* xfer from buffer to address */

/* only on 808x — read from
IO space */

/* only on 808x — write to
{0 space */

/* write from buffer, then read
back */

/* we've noticed cmd and are
working on it */

#define MRWS_OK $0000/* command completed OK */
#define MRWS_ACCESSERR 50001/* some sort of protection

violation */

#define MRWS_BADCMD $0002/* command that the server

doesn't understand */

and amiga

services.h—define common service numbers between ibm-pc

Copyright © 1986, Commodore-Amiga Inc., All rights reserved

#ifndef JANUS_SERVICES_H
#define JANUS_SERVICES_H

**/

/* this is the table of hard coded services. Other services may exist

/* that are dynamically allocated.
/**/

153

/* service numbers constrained by hardware */
#define JSSERV_MINT 0 /* monochrome display written to */

#define JSSERV_GINT 1 /* color display written to */

#define JSERV_LCRT1INT 2 /* mono display’s control registers
changed */

#define JSERV_CRTZ2INT 3 /* color display's control registers
changed */

#define JSERV.ENBKB 4 /* keyboard ready for next

character */
#define JSSERV_LPTTINT 5 /* parallel control register */
#define JSERV_COMZINT 6 /* serial control register */

/* hard coded service numbers */

#define JSERV_PCBOOTED 7 /* PC is ready to service soft
interrupts */

#define JSSERV_SCROLL 8 /* PCis scroiling its screen */

#define JSERV_HARDDISK 9 /* Amiga reading PC hard disk */

#define JSERV_READAMIGA 10 /* PC reading Amiga mem */

#define JSERV_READPC 11 /* Amiga reading PC mem */
#define JSERV_AMIGACALL 12 /* PC causing Amiga function call */
#define JSERV_PCCALL 13 /* Amiga causing PC interrupt */

#define JSERV_.NEWASERYV 14 /* PC initiating Amiga side of a
new service */

#define JSERV_.NEWPCSERV 15 /* Amiga initiating PC side of a
new service */

#endif IJANUS_SERVICES_H
#ifndef JANUS_SETUPSIG_H#define

setupsig.i-—data structure for SetupJanusSig() routine
Copyright © 1986, Commodore-Amiga [nc., All rights reserved

#ifndef EXEC_TYPES_H
#include “exec/types.h’”
#endif

#ifndef EXEC_INTERRUPTS_H
#include “exed/interrupts.n”
#endif

struct SetupSig [
struct Interrupt ss_Interrupt;
APTR ss_TaskPtr;
ULONG ss_SigMask;
APTR ss_ParamPtr;
ULONG ss_ParamSize;
UWORD ss_JanusintNum;

]:

#endif

154

PC JANUS SERVICE

This service is called via INT JANUS.
AH contains a function code

J_GET_SERVICE
Gets a new Service Number
Expects:
nothing
Returns:
AL : New Service Number to use
— 1 if no service available (J_.NO_SERVICE)

J_GET_BASE
Gets Segments & offset of Janus Memory
Expects:
AL : Janus Service Number
Returns:
ES : Janus Parameter Segment
DI : Janus Parameter Offset (if defined),
else —1
DX : Janus Buffer Segment
AL : Status (J.OK, J.NOSERVICE)

J_ALLOC_MEM
Allocates Janus Memory
Expects:
AL : Type of memory to allocate
BX : Number of Bytes to allocate
Returns:
BX : Offset of registered memory if success,
AL : Status (J_OK, J.NO.MEMORY)

J_FREE_MEM
Releases Janus Memory
Expects:
AL : Type of memory to free
BX : Offset of Memory to free
Returns:
Crash if offset/type was wrong (J_GOODBYE, later)

J_SET_PARAM
Set the default parameter memory pointer
Expects:
AL : Janus Service Number to support
BX : Default Offset of Param Memory to install
Returns:
AL : Status (J_OK, J_NO_SERVICE)

155 -

J_SET_SERVICE
Set an address for a far call for that service
Expects:
AL : Janus Service Number to support
ES:DX: Entry address for FAR call
Returns:
AL : Status (J.OK, J.NO_SERVICE)

J_STOP_SERVICE
Prevents AMIGA from using the far call {see above) for this function
and releases this Service Number.
No memory is freed up.
No calls are accepted from either side anymore.
Expects:
AL : Number of Service to stop
Returns:
AL: Status (J.OK, J.NO_SERVICE)

J_CALL AMIGA

Calls the requested function on AMIGA side.

Does not wait for the call to complete.

If J.SET_SERVICE defined, it is internally called on completion.

Expects:
Al : AMIGA Service to call
BX : New Parameter Memory offsettouse, -1 : Use
default offset
Returns:

AL: Status (J_PENDING, J_FINISHED, J_NO_SERVICE)

J_WAIT_AMIGA
Waits for a previous issued J.CALL AMIGA to complete,
This function is used if no J.SET_SERVICE is defined.
Expects:

AL : Service Number to wait for
Returns:

AL : Status (J_FINISHED, J_NO_SERVICE)

J_CHECK_AMIGA
Checiks completion status of a pending J.CALL_ AMIGA
Expects:

AL : Service Number to check

Returns:
AL : Status (J.PENDING, J_FINISHED, J_NO_SERVICE)

This is the Interrupt we are using:
JANUS equ Obh

These are the function codes we know:
JGETSERVICE equ O
J_GET_BASE equ 1
JALLOCMEM equ 2

156

: No service available

- after J_CALL_AMIGA and
J_CHECK_AMIGA

: after J_.CALL_AMIGA and
J_.CHECK_AMIGA

; general good return

; requested memory not available
- lllegal function code used in AH

Disk request structure for higher level Amiga file request from 8086:

J FREE_MEM equ 3
J_SET_PARAM equ 4
JSETSERVICE equ 5
J.STOP_SERVICE equ 6
JCALLAMIGA equ 7
JWAIT AMIGA equ 8
J.CHECK AMIGA equ 9
Status Returns:
JNOSERVICE egqu O
J_PENDING equ O
J_FINISHED equ 1
J.OK equ O
JNOMEMORY equ 3
JILLLFNCTN equ 4
AmigaDskReq STRUC
adr_Fnctn DwW

adr _File DW
adr_Offset_h DW
adr_Offset 1 DW
adr_Count_h DW

adr Count_! DW
adr_BufferAddr DW
adr_Err Dw
AmigaDskReq ENDS

ESIES JESS IEIS JUEN, REDS JETN |

~J

function code (see below)

file number

byte offset into file high

byte offset into file low

number of bytes to transfer high
number of bytes to transfer low
offset into MEMF_BUFFER memory
for buffer

return code, O if ali OK

Function codes for AmigaDskReq adr_Fnctn word

ADR_FNCTN_INIT EQU
ADR_FNCTN_READ EQU
ADRFNCTN_.WRITE EQU
ADR_FNCTN_SEEK EQU
ADR_FNCTN_INFO EQU

ADR_FNCTN_OPEN_OLD EQU
ADR FNCTN_OPEN.NEW EQU
ADR_FNCTN_CLOSE EQU
ADR.FNCTN_DELETE EQU

o~k wNn—O

currently not used

given fiie, offset, count, buffer
given file, offset, count, buffer
given file, offset

currently not used

given ASCIIZ pathname in buffer
given ASCIIZ pathname in buffer
given file

given ASCIIZ pathname in buffer

Error codes for adr_Err, returned in low byte

ADR_ERR.OK EQU
ADR_ERR_OFFSET EQU
ADR_ERR_COUNT EQU
ADR_ERR_FILE EQU
ADR_ERR_FNCT EQU
ADR ERR_EOF EQU
ADR_ERR_MULPL EQU

ADR.ERR_FILE_COUNT EQU

157

SNOoOUlDhWN — O

no error

not used

not used

file does not exist
illegal function code
offset past end of file
not used

too many open files

ADR_ERR_SEEK
ADR_ERR_.READ
ADR ERR_WRITE
ADR_ERR_LOCKED

158

EQU
EQU
EQU
EQU

10
11

seek error

read went wrong
write error

file is locked

Section 5

Amiga Hard Disk/SCSI Controller

DESCRIPTION The Amiga Hard Disk/SCSI Controller is an intelligent high perfor-
mance controller designed to interface both ST506 hard disk drives
and SCSI devices to the Amiga expansion bus architecture. A back-
ground command processor provides high level command interpre-
tation minimizing Host intervention. Data is transferred to and from
the Host via DMA (direct memory access} with FIFO allowing high
data throughput while maintaining reasonable bus bandwidth for
other bus controllers.

FEATURES

e Support for up to two ST506 hard disk drives

® Full SCSI with Maclntosh Plus compatibility

e High level command interpretation and exceptional handling per-
formed by Z80 processor

e Support for up to 8 heads, 2048 cylinder with 512 bytes/sector

e Individually Programmable Drive Characteristics

e 1:1 sector interleave

e 32 bit ECC for data correction

e Multiple block transfers

e Full auto-config compatibility

® Real time data transfer rates of up to 800ns/byte via DMA

SPECIFICATIONS Performance
Hard Disk (ST506)

Encoding method: MFM
Cylinder per head: Up to 2048
Sectors per track: Upto 17
Sector length: 512

Heads: 8

Drive Selects: 2

Step Rate: 3.2ustoB.5ms
Data Transfer Rate: 5.0 Mbit/sec.
Write Precomp Time: 12 nanosec.
Sector Interleave: 1:1

Sector Interleave Across Heads: 1.2

Ecc Polynomial: 32 bits
Burst Error Correction: 11 bits

159

ANSI X3T9.2 compatible
MacIntosh Plus compatible connector

Host Interface
Amiga expansion bus compatible
Full auto-config compatibility

Power Requirements
+5 Volts £5%, 3 Amps. Max.

Environmental
Ambient Temperature; 0-55Deg. C.
Relative Humidity: 209% - 80%
CONNECTOR PIN The following tables list the pin assignments for the controller
ASSIGNMENTS board. | |

Table 5-1 — Connectors J1 and J2
Disk Serial Data Pin Assigntnents

Ground Signal
Return Pin Signal Name
2 ' 1 Drive Selected
4 3 Reserved
6 - 5 - Write Protected (J1 Only)
8 7 Reserved
10 9 Cartridge Changed (J1 Only)
12 11 Ground (GND)
13 MFM Write Data +
14 MFM Write Data-
16 15 Ground {GND)
17 MFM Read Data +
18 MFM Read Data-
20 19 Ground (GND)

160

Ground
Return
1
3
5
7
g
1"
13
15
17
19
21
23
25
27
29
3
33

161

Table 5-2 Connector JO
Disk Control Signal Pin Assignments

Signal
Pin

Signal Name
Head Select 3
Head Select 2
Write Gate
Seek Complete
Track 00
Write Fauit
Head Select 2
Reserved
Head Select 1
Index

Ready

Step

Drive Select 1
Drive Select 2
Reserved
Reserved
Direction In

Table 5-3

Connector CN1, SCSI
SCSI Connector (DB-25) Female

Pin

Name
REQ
MSG

1/0

RST

ACK

BSY
GROUND

DBO

GROUND

DB3

DB5

DB6

DB7
GROUND
C/D
GROUND

ATN

GROUND
SEL
DBP
DB1
DBZ2
DB4
GROUND
N.C.

Reference

FUNCTIONAL
DESCRIPTION

Host Interface

STS506 Hard Disk
Controller (HDC)

8727 DMA Specification

Amiga Expansion Architecture Manual

Motorola 68000 Technical Manual

Western Digital WD33C93 SCS| Chip Manual

American National Standard Committee X3T9.2 SCSI Specifica-
tion _

The Amiga Hard Disk Controller basically consists of three main sub-
sections:

® Host Interface
® ST506 Hard Disk Controller (HDC)
® S5CSI Controller

The host interface is 68000 compatible with direct memory access
and full auto-config capability. Data transfers to and from the host
are usually made via DMA thereby allowing real time date transfer
rates of 1.6us/byte for the ST506 interface and up to 800ns/byte
for SCSI. Addressing for DMA operations is provided by three exter-
nal address counters. Before any DMA operation can be performed
each counter must be pre-set and thereafter will be incremented
automatically. Information on initializing the DMA appears later in
this section.

The DMA is a Commodore custom LSI chip (8727) with byte to word
funneling and a built in 64 byte FIFO. The internal 64 byte FIFO per-
mits real time data transfer to and from the host without holding the
bus for an entire sector transfer. This provides very effective utiliza-
tion of the bus. The average bus requirement for the transfer of an
entire sector is 8.9us once every 51.2us. This amounts to only 17%
over for CPU and other bus masters.

The interface logic aiso provides full auto-config and all I/O decode.

For electrical specification and detailed timings refer to Amiga ex-
pansion architecture manual.

The ST506 Hard Disk controller is an intelligent background control-
ler capable of high level command interpretation and support of up
two ST506 hard disk units. This controller will be refered to in this
document as the HDC or the Hard Disk Controller. The processor for
the HDC is a Z80A CPU, with up to 8K of PROM for firmware and
1K of RAM for variable data. Collectively, the above components
constitute the “intelligence™ of the controller.

162

The DJC Custom Chip

The design that has gone into this aspect of the controller has been
to enhance performance and increase flexibility while reducing cost.

As a result, the majority of operations have been placed in firmware.
The only functions performed by “hardware” are those that are too
fast for the processor.

The Z80A CPU and its associated PROM and RAM collectively per-
form the following functions:

1. Power up initialization

2. Diagnostics

3. Error recovery

4. Error reporting

5. Error correction

6. Command processor

7. Disk select

8. Seek

9. Write precomp select, reduced write current

10. Head select

11. Mapping

12. Logical to physical address translation
Physical to logical address translation

The DJC is a custom LS! chip. It has been designed to handle all serial
data, state machine and DMA functions as described below:

ERROR CORRECTION CODE

The error correction polynomial is a 32-bit code capabie of correct-
ing up to 11-bit burst errors.

In keeping with the overall design philosophy, the ECC circuitry gen-
erates the write syndrome and validates the read without requiring
the processor to handle the data. Calculating this polynomial with the
processor would seriously degrade the performance of the ST506
controller. Calculating the reverse polynomial to correct bad data is
done by the processor. It is accomplished without any measurable ef-
fect on performance because the operation is only done after multi-
ple retries and as such is seldom necessary.

HEADER VERIFICATION

Once a disk has been formatted, the DJC converts the desired record
address on the disk. The conversion is done in terms of head, track
and sector address, with a CRC code tested to further insure posi-
tional integrity. A comparison is then made of the header before a
read or write function is performed.

163

TWO INDEX TIMEOUT

This function insures accurate control over the number of attempts
to find a header (i.e., it is not "mislead™ by counting false address
marks).

MFM ENCODE

The DJC converts all parallel data to serial and then to MFM. This
function is followed by Precomp, if selected.

Selectable Precomp In Precomp, a “‘string” of pulses is analyzed to determine if they are
arranged in the unique manner that could cause them to crowd once

written on the disk. It also determines which way the crowding
would distort the pulses when read. The write puise stream is then
shifted, early or late, to compensate for the crowding conditions,
which normally occur on the innermost tracks of the drive.

Under the processor’s control, the DJC precomps the disk MFM data
by using external inductive delays. Precomp is selectable and is de-
signed to shift the MFM data early or late by 12 nanoseconds to im-
prove read margins.

The use of this feature should be performed in conjunction with the
particular drive manufacturer’s specification.

MFM Decode Data received from a disk drive is MFM, a self-clocking serial data
_ _ _ _ stream which contains a phase locked loop, lock detect, missing clock
' S T T detect and the data seperator.
When the DJC asserts Read Gate, the 8465 data seperator will at-
tempt to lock its phase locked loop on the read data. If this does not
occur within 4.8 usec, the DJC will turn off Read Gate, causing the
8465 to be placed into the low track rate for increased stability.

The MFM data is now decoded into NRZ data and clock for the DJC.
The 8465 decodes a missing clock bit and a hexidecimal A1, FD or an
A1, F8 in the sync field. This data indicates the start of a valid header
or data field. Receiving any other data causes the DJC to abort the
read. Another read would be tried after resyncing the 8465 to 10
MHz.

164

Sector Format

Error Recovery
Philosophy

Figure 5.1 describes the format of a typicai sector.

Figure 5.1
Typical Sector Format

* [SyNC 1]A1 [FD [HEADER [WRITE SPLICE [SYNC 2 A1 [F8 [DATA |4 BYTE ECC

512 BYTES

L ADDRESS MARK

4 BYTE HEADER

BYTE 1 = HEAD #

BYTE 2 = TRACK ADDRESS
BYTE 3 = SECTOR #

BYTE 4 = CRC

Note: 1. Address Mark is a Hex 1 with a missing clock puise.
2. SYNC field 1 is comprised of 16 bytes of zeros.
3. SYNC field 2 is comprised of 15 bytes of zeros.

Extensive measures have been taken in the design of the controller
to insure reliable data. Selectable precompensation circuitry and a
sophisticated data seperator with two tracking rates are a few exam-
ples. Additional effort has been made to reduce the probability of
miscorrection (of having bad data flagged as corrected) through de-
sign and options made available to the systems integrator.

In a write operation the controller only precomps the unique combi-
nations of data that might cause crowding conditions on the disk.
Shifting data early or late by 12 nsec is done to retain as much of the
50 nsec data window as is possible. This reduces the probability or
€rrors occurring.

In a read operation the data seperator phase lock loop (PLL) provides
two tracking rates, a high and a low, which allows for quick synchro-
nization with the header address in the first case and stable data
transfer in the second. The controller only contributes a maximum of
6 nsec (typically 3 nsec) of window error out of the allowable error
window of 50 nsec. This allows the disk drive to have up to 44 nsec
of jitter before error recovery/correction is needed.

The controller uses a 32-bit error correction code that enables an er-
ror correction span of up to 11 bits. This computer-generated code
is considered superior to fire codes because it substantially reduces
the chances of mis- correction while providing the full 11-bit correc-
tion span.

165

SCSI Controller

/O DEFINITIONS

In data recovery and error correction the ECC syndrome must be
stable in order to perform a correction. This insures that multiple at-
tempts are made to recover marginal data before correction data is
applied and further reduces the probability of miscorrection on long
{greater than 12-bit) error bursts.

The significance of not correcting data unless the ECC syndrome is
stable is that 1) noise induced errors are not corrected and 2) real
errors are corrected quickly without wasting time on useless retries.

The user can improve data reliability by mapping tracks with flaws
and by reducing the error correction span. The latter reduces the
cdds of mis-correction on large errors (greater than 12 bits) and
provides for early detection of a degrading media. The controller can
be programmed to report or not report “soft” errors, on reads that
took multiple tries but did not need correction.

Monitoring soft errors is probably the best method of early detec-
ticn. A correction span of seven (7) bits is thereby suggested as an
optimum in data integrity. An alternate eleven (11) bit correction
span could be used as a rmeans to retrieve the data before the track is

mapped.

The SCSI controller uses the Western Digital WD33C83-3BIC which
provides the actual interface to the SCSI connector and supports the
full SCSI protocal minimizing host responsibilities. The WD33C83 is
supported with a flexible architecture allowing either the 68000
(host) or the Z80A {board processar}) to control the WD33C83 oper-
ations. Data transfer can be done via DMA or host /0. For detailed
information refer to Western Digital WD33C93 manual.

The following 1/Q addresses refer only to offset location since the ac-
tual board location in physical memory is configurable as described
elsewhere in this manual. Refer to this manual for details on auto-
config I/C descriptions. 1/0 locations O hex through 42 hex are writ-
ten out as nybbles or 4 data bits (AD12-AD15). I/0 addresses S0H -
68H are unique to this board and are described later in this docu-
ment.

Hex Location Definitions

00/02 Boardtype and size
04/06 Product number
10/12 Mfg # high and
14/16 low byte

166

40/42

15/14/13/12 15/14/13/12

L Interrupt enable
*5SEL
MRESET

WRITE READ

[nterrupt enable

DON'T CARE
MUST BE ZERO
*HCBP bit *CCBP bit
not defined INT2 PENDING
not defined ZERO
not defined ZERO
not defined INT FOLLOW

* Signals unique to Amiga Hard Disk/SCS! Controller.

SSEL

HCBP.CCBP

48H

I/0 addresses unique to 50H

board

52H

SCSI Controller 60H

62H
64H

68H

167

Used to select SCSI controller or to STE05
controller. High = SCSI, iow = ST506.

Host command block pointer and Controller
command block pointer. Used to handshake
address of Command block pointer to ST506

Base address register

PROCC-Interrupt ST506 controller to process
command. Write only. Data value written from
host is XXX1 hex.

WRCBP/INTACK - Multiplexed signal. WRCBP
strobes the command block pointer register. IN-
TACK clear INTP at end of command.

CS - Chip select for the WD33C33 SCSI chip.
Used to write to the internal address register and
read from the internal status register.

CS - Chip select for the WD33C393 SCSI chip.
Used to write and read remaining Control regis-
ters in the WD33C83.

SCS! PCSS - Used to initialize the 8727{DMA) in
SCSI mode. Refer to section 5.0 for 8727 com-
mands

SCS! PCSD - Used to pas data to and from the
8727 in SCSI mode. Refer to section 5.0 for
transfer procedures.

HOST INTERFACE
PROTOCOL

Interface Protocol

DMA Commands

The host interface is via a DMA controller. This DMA device is con-
trolled by the Z80A on the disk controller board or 68000 (host). On
the host side there are counters for the address bus that are preset
before the beginning of each transfer. Three bytes must be written
for the 23 address lines (A23-A1). The MSB (corresponding to A24)
of the upper address latch is used to control the host R/W- line for
DMA transfers. This line is set high to read from the host memory
and low if a write is intended. The DMA logic, contained in one chip,
can be configured to transfer a single word (2 bytes) or 256 words
(512 bytes). Transfer are always on even byte boundaries.

The method of communicating to the DMA circuit is by two control
lines PCSS- and PCSD-, controlled by the Z80 or 68000. PCSS- is al-
ways strobed first to strobe in the “state” on the data bus. The state
will determine the function to be performed on the succeeding
PCSD- strobes. Not all valid states need to be followed by a PSCD-
strobe and for each state loaded, PCSD- can be strobed any number
of times. When reading the host status for instance, the expected
number of PCSD- strobes need not be given, but when writing to the
DMA controller the correct number of PCSD- strobes must always be
given.

The valid commands, for DMA operations, are summarized in the ta-
ble below. All data vaiues are listed in hex.

Multiple states can be strobed into he DMA controller as long as no
bus contention occurs. Notice that the state bits 4-0 are low in one
position only for all the valid states. This implies that any state that
does not require transfer of data by the following PCSD- can be
combined and set simultaneously. Hence a single word transfer and
start DMA cycle can be combined as DE. Some states are mutually ex-
clusive such as F7 (transfer data to or from the FIFO) and EF (read-
ing the DMA status). Similarly state D6 is illegal since word transfer
and the FIFO path open will result in BUS contention. State FC is per-
mitted as long as the same data is to be written in the DMA mid ad-
dress latch and DMA low address counter. Other such valid states can
be simiiariy derived.

168

Load Upper DMA
Address Counter (FB)

Load Mid DMA Address
Counter (FD)

Load Low DMA Address
Counter (FE)

Table 5-4. DMA States

Data Strobed . Brief Functional Data Valid
by PCSS- DESCRIPTION ‘ PCSD- (R/F)
FB 1111 1011 Load upper DMA address latch F
FD 1111 110t Load mid DMA address latch F
FE 1111 1110 Load low DMA address latch; start DMA F
on rising edge of LDO; block mode XFER
F7 1111 1111 Open path to int. DMA FIFQ (64 bytes) R
EF 1110 1111 Read internal DMA status R

DB7 = 1 if no DMA ar DMA cycle complete
DB6 =1 if byte avail. from or to FIFO
DB5 = 1 if no FIFQ overflow or underflow

9F 1001 1111 Force IREQ- to high impedance
BF 1011 1111 Command complete signal to host
DF 1101 1111 Set DMA into a single word transfer

7F 0111 1111 Reset DMA and clear FIFO followed by FF
FF1t11 1111 to ensure proper DMA reset.

PP S A S

The LD2 output of the DMA chip is set low on the rising edge of
PCSS- and then set high on the falling edge of PCSD-. This loads the
R/W- and the upper 7 address lines A23-A17 from the data bus into
a counter on the rising edge of LD2. This 8 bit counter need not be
reloaded if its contents are to remain unaltered in the succeeding op-
erations.

Address lines A16-A9 are loaded into another counter in the same
manner as above by the rising edge of LD1. This 8 bit counter also
need not be reloaded if its contents are to remain unaltered in the
succeeding operations.

On the falling edge of PCSD-, LDO is set high to load the address lines
A8-A1. The rising edge of LDO will start the DMA circuit. This also
implies a block mode transfer operation, since bits 7-4 are all high.
On power-up the DMA controller defaults to the block transfer
mode. It should be noted that alt three address counters mentioned
above are cascaded allowing for the continues transfer of up to 64

Kbytes.

169

FIFO Access (F7)

Read DMA Status (EF)

Reset IREQ- (9F)

This state opens a path to an internal FIFO that is 64 bytes in length.
The failing edge of PCSD- will start to shift data out of the FIFO for a
read or shift data into the FIFO on the rising edge of PCSD- if the
R/W- was set low with LDZ. The DMA will initiate host memory ac-
cess, done a word at a time, whenever the FIFQ is half full. A typical
mermory access without any wait states takes 4 cycles, each cycle be-
ing about 140 nS.

The host DMA status must be read before initiating any data trans-
fer, since its FIFO can be shared by another device. At the end of ev-
ery word or block transfer initiated by the hard disk controller, the
status must be read to ensure successful data transfer completion.
Status is not read after every word in a block transfer. After the last
byte, in a block transfer, has been strobed into the DMA controller
approximately 12 uS are needed to ensure that the DMA status lines
are all high. To read the status, any number of PCSD- strobes may be
used before initiating another DMA cycle. The DMA internal status
available after the falling edge of PCSD- is interpreted as follows:

DATABIT 7 This line will be high if no DMA was requested or
a DMA cycle was completed. After completion of
a word or a block transfer, this bit will be set
high. A low indicates DMA busy status.

DATA BIT &: This bit is high if a byte of data is available to be
read from the FIFO, or if there is a byte to be
written and the FIFO is not full. At the end of a
block write operation to the disk, since there are
no more bytes available, this bit is set low.

DATABIT 5. This line is low if the FIFO overflowed or
underflowed. This may occur during a disk
transfer if the DMA circuit does not receive a bus
acknowledge signal from another device on the
68000 motherboard, before the FIFO becomes
full or empty. Under this condition the FIFO is
cleared by the Z80, before any other data
transfer can be initiated.

DATA BITS 4-0: These data lines will be logic zero.

This state will force IREQ- line to high impedance. It is set low by the
host.

170

Command Complete
Acknowledge (BF)

Word Transfer (DF)

Reset DMA (7F)

HOST/HDC COMMAND
PROTOCOL

Step 1: Setting Up The
DMA Address

Step 2: Reading Data

This will cause the assertion of the host vectored interrupt line to its
active low state to indicate the completion of a command by the
HDC.

This will set the internal DMA circuit into a single word tranfer. On
completion of the word transfer, the DMA resets to a block transfer
mode. Hence this state must be strobed for every word transfer de-
sired.

This state, followed by state ‘FF’, resets the DMA circuits and clears
the FIFQ. This state should be strobed on power-up and to clear any
FIFO underfiow or overflow conditions.

Commands are passed to the HDC through the DMA circuit. When
the host requires a disk transfer a command block will be setup in
the 68000 memory followed by the host asserting the IREQ- line
low. The Z80 will then go through a sequence for each IREQ) as dis-
cussed below:

State FB is loaded into the DMA circuit with PCSS- followed by
PCSD- with the hex value of desired high ordered address. Bit 7 of
the data bus determines the direction of the transfer, a low will
cause a write operation to host and a high will cause a read from
host. :

Then state FD is loaded into the DMA circuit with PCSS followed by
PCSD- with the value of desired address on the data bus. This sets up
address lines A16-A9. ‘

State DE is loaded with PCSS- for a word transfer. A value of 06 is
loaded with PCSD- to point to the 12th and 13th bytes of the com-
mand block. On the falling edge of PCSD- the DMA word cycle will
begin. Byte 12 must be FF before the command is executed.

The state EF is loaded with PCSS- so that on the falling edge of

PCSD- internat DMA status will be outputed. The data lines DATA7,
DATAB, and DATAS are examined until they are high indicating com-
pletion of the DMA cycle and that data has shifted through the FIFO.
For a block write operation to the disk, DATAG is examined until low.
The HDC will sample the status for about 20 mS, until the data bus

171

Step 3: Reading The
Command Block

Step 4: Data Block
Transfer

Step 5: Command
Completion

COMMANDS

Command Block

contains EQ or AQ, before attempting to clear the FIFO and retrans-
mit the block of data, if necesssary. If the FIFO cannot be cleared
after within 20 mS, the command will be terminated in the normal
manner, if possible.

If byte 12 is an FF, the rest of the command block is retrieved by the
CMD. This requires the execution of Step 1 (LDO only) followed by
Step 2 four times. The data value for state DE of Step 1 is incre-
mented from 00 to 03, by the HDC for each word transfer to get all
eight command bytes.

Block transfers are initiated as in Step 1 except that the third state
loaded is FE. The state DE was a single word transfer. The direction
of transfer is determined by data line DATA7 when initializing the
high order address lines. Status is read by the HDC at the end of
every block or word transfer, and at the start of every new com-
mand.

To complete a command status must be returned to the host. The
status information returned is that defined by the ‘Request Sense’
command. To do this, 2 status words must be transferred to the
command block. The host DMA is setup for a word transfer, by set-
ting the LD2, LD1, and the LDO counters similar to the read of the
command block byte 12 (see Step 1). The four status bytes: ERROR
CODE, LUN:LADDZ, LADD1, and LADDO are loaded into the FIFO on
the rising edge of PCSD-, a word at a time. As usual, the DMA status
is examined, between word transfers. [f the command, just executed
by the HDC required a disk access, then the ADV (address valid) bit is

set. Otherwise ADV =0 to indicate that the LSA, reported in the 4

byte status block, is meaningless. This completes the instruction. The
host is acknowledged by writing state BF to set the host vectored in-
terrupt line low. Also IREQ- is deasserted by the HDC.

In the 68000 memory located at an address determined by Amiga
DOS is a 16 byte command block. The first byte received through the
FIFO is the M5B even byte, followed by the LSB odd byte. During the
command block transfer phase, 8 bytes specifying the command are
read by the HDC. The command block is organized as follows:

172

Command Class

Operation Code

Logical Unit Number

Table 5.5. Host Command Block

BYTEWORD| 7 | 6 | 5 | 4 [3 [2]1]o0
0 0 | Command Class OP Code
1 0 | Logical Unit Number | Logical Sector Address (High)
2 1 Logical Sector Address {Middle)
3 1 Logical Sector Address (Low)
4 2 Block (sector) Count
5 2 Control Byte (reserved in DMA spec)
6 3 High Order DMA DB Address (A23-A17)
7 3 Mid Order DMA DB Address (A15-A9)
8 4 Low Order DMA DB Address (A1-AB)
9 4 | Reserved
10 5 Reserved
11 5 | Reserved
12 6 ADV | Error Type Error Code
13 6 LUN LADD 2
14 7 LADD1
15 7 LADDO

Byte O must be specified for all commands. Depending on the vaiue of
Byte 0, each parameter in Bytes 1 through 5 may require specification.
Table 6.2 specifies the supported commands and their parameters. It
also includes information in data transfers required during execution.
All other commands are reserved.

There are eight command classes. Cormand class O contains the
commands used in normal operation. Command class 7 contains the
diagnostic commands. Command classes 1, 2, 4, 5, and 6 are re-
served for future use.

e

There are 32 operation codes in each command class. For a descrip-
tion of all the available op codes see the Command Description Sec-

tion.

This is contained in the upper three bits of Byte 1 specifyfing one of
eight logical unit numbers. Logical units O and 1 are hard disk drives
0 and 1 respectively. Logical units 2 and 7 are reserved for future
use. The HDC reports an invalid command if the logical unit number
is out of range. However, for error reporting, all even LUN's are
treated as drive O and all odd LUN's are treated as drive 1.

173

Logical Sector Address

Block Count

Control Field

DMA Memory Address

A logical sector address is a 21 bit unsigned integer that specifies a
unique physicai sector. The one-to-one correspondence between the
set of logical sector addresses and the set of physical sectors is com-
puted by the HDC from the Cylinder (C). Head (H). and Sector (S)
address, as well as the drive parameters, heads per drive (HD) and
Sectors per track (ST):

L= (({C*HD)Y*H)}*ST) + S
C, H and S can be derived from L, HD, and ST as fcllows:

S = L Modulo ST
H = ((L-S)/ST) Modulo HD
C = ({ (L-S)y/ST)-H)/HD

This field specifies a sector or the first sector for the Read and Write
Drive commands. When only a track specification is required, the sec-
tor number implied by the Logical Sector Address is ignored. Hence
each format type command begins operation at the beginning of the
track containing the specified sector. The HDC will report an invalid
command, if the logical address specified is out of range.

The sector count is a parameter for each data transfer command. It
specifies the number of logical sectors to be transferred during any
disk READ or WRITE operations. The sector count is an unsigned,
non-zero integer. All zeros in the sector count field specify a count of
256.

For a format command, the number of sectors to be formatted per
track is specified by this byte. The interleave factor need not be ex-
plicitly furnished by the host, since it is implicitly contained in the in-
terleave table furnished by the host.

The control field is reserved for future use.

The next three bytes, bytes 6, 7, and 8, make up the 23 bit address
which points to the block of 512 byte to be transfer via DMA. This

block of memory contains data bytes or specifies an address value as
required by the command to be executed. Since the R/W- bit is part
of the LDZ memory address counter, address bits A1-A23 are shifted
right 1 bit by the HDC before being stored for command execution,

174

Status and Error Bytes

Error Bytes

At the completion of each command the HDC will return status in the
last four bytes (12-15) of the command block. The status format is
similar to that returned by the 'Request Sense’ SCSI command. This
four byte block contains error and status information pertaining to

the last block of data transferred or a non-disk operation executed

by the HDC. The ADV bit will be set, to indicate a valid address, if the
last operation required a disk access, otherwise ADV =0.

The legical unit number returned is simply the contents of the logical
unit field, where the error occurred, as defined in the drive control
block. For those commands that do not take a logical unit number as
an input parameter, the logical unit number returned in the com-
mand status byte is not meaningful.

A list of possible error codes, along with their descriptions, follows:

The logical sector address bytes are to be in the same format as that
defined in the command block. Bits 3-0 of the error byte is used for
the error codes. Bits 4, 5 indicate the error type and 7 is the ADV bit.
Bit 6 is not used presently.

Disk Drive Error Codes (Type O)

No error

No Index

Seek not complete
Write fault

Drive not ready
Track O not found

hWN—-O

Controller Error Codes (Type 1)

11 Uncorrectable data error
12, Address mark not found
13 Sector not Found, Read
14 Sector not Found, Write
15 IDNF error

Command Error Codes (Type 2)
20 Invalid command

21 Invalid sector address

22 Invalid LUN

Hardware Error Codes (Type 3)
30 RAM failure {HDC)

31 ROM Checksum Error

32 Host DMA status error

175

Error Code Description

No Error

A code of 00 or 80 is returned if no errors were detected during the
execution of the last operation.

No Index (1)
The HDC does not detect index signal from drive.

Seek in Progress (2)

This error code is only returned by the test drive ready command
when the target drive is a hard disk that supports buffered seeks. It
indicates that drive is busy doing a buffered seek. No other command
will be executed on the selected drive, until the seek is completed.

Write Fault (3)

This error code is returned by the hard disk drives. It indicates that
there was write current to the head when the write gate was off.
This is a very serious problem and should be fixed immediately. No
command will be executed, when this condition is detected.

Drive Not Ready (4)
No disk operations are executed uniess the drive is ready.
Track O Not Found (6)

This error code is only returned by the recalibrate command. It indi-
cates that the track O status from the drive did not become active
after the maximum necessary steps towards cylinder 0. Besides drive
malfunction, this type of error usually occurs if more than 1 disk
drive is selected at the same time, either by the HDC or by the option
switches on the supported drives.

Uncorrected Data Error (11)

For a Winchester drive this error code indicates one or more error
bursts in the data field were beyond the error correction code’s abili-
ty to correct. It could also mean that the HDC was unable to obtain a
match of two consecutive syndromes within eight read attempts.
The sector data for the sector in error is sent to the host, prior to
any retries and correction algorithms used.

Address Mark Not Found (12}
It indicates that the header for the target sector was found, but its

address mark was not detected. This is treated like a data field error,
except that no data transfer to the host takes place. If the error per-

176

sists after 8 attempts, an auto-restore is performed, followed by a
reseek, and another 8 attempts to read the desired LSA.

Sector Not Found, Read (13)

The HDC found the correct cylinder and head but not the target sec-
tor.

Sector Not Found, Write (14)

The HDC found the correct cylinder and head but not the target sec-
tor.

1.D. Not Found (15)

If the ID field cannot be read correctly after all the retries have been
exhausted, this error code is set and the operation terminated. The

WDC searches for the 1D field twice, followed by another 8 attempts
by the HDC.

Format Error (1A)

During a check track command the HDC detects one of the following
errors:

1) Track not found.

2) Bad ID

lllegai Parameters (20, 21, 22}

These error codes, invalid command (20), illegal LSA (21), and illegal
LUN (22} are self explanatory.

HDC RAM Error (30)

During internal diagnostic the HDC detects a RAM error.

HDC ROM Checksum Error (31)

During internal diagnostic the HDC detects a ROM checksum error.
Host DMA Failure

This error code is set whenever invalid status is read from the DMA
during any data or command access. For most operations the status
checked is EO (hex). except for a block write. In this case the valid

status checked for is AQ. The status is read continuously for about
20 mS.

177

COMMAND

DESCRIPTION

Read Drive Status (Class

0, Opcode 0)

Restore (Class 0,

Opcode 1)

All commands executed by the HDC are summarized in the table be-
Jow. Fields of the command block not specified are don't cares. Fol-
lowing this summary is a generalized description of the cornmands.

Table 5-6. Command Sumrmary

Command Class LUN LADD Int/ Control Possible
Description Opcod Num (21) BCNT Options Error Codes
00 O

Read Drive Status RDS

Restoreto TKO 01 O-1 06, RDS

Request Status 03 01 Last Oper.

Check Trk Fmt 05 01 L R RDE. RDS. IDA

Format Track 06 01 L B S DA

Read Drive g8 01 L B R.S RDE, RDS, IDA

Write Drive cA 01 L B R.S 15,19 RDS, DA

Seek 0B 01 L RDS, IDA

Set Drive Param. 0OC O 20,32

Change Command OF 20,32

Block Address/

Read DriveLlong E5 01 L B R S RDE, RDS. IDA

Write DriveLong E6 01 L B R S 15,19, RDS, IDA

[nit. Unit 1 & 1 20, 32

R = 0 Retries/ECC enable S = 0 Set correction span to 5 bits
= 1 Retries/ECC disabled = 1 Set correction span to 11 bits

L = Logical Sector Address B = Block or sector count required

Read Drive Status (RDS) = 02, 03, 04, 20, 32
lllega! Disk Access (IDA) = 20,21, 22, 32
Read Sector Error (RDE) = 11, 12, 13, 14, 15

Action

Read the drive’s status and determine if drive is ready. For Hard disk
drives supporting buffered seeks this command is useful for deter-
mining the first drive to reach its target track. The command will be
aborted, if the drive status read is incorrect.

Possible Error Codes

No error, invalid command, seek in progress, drive not ready. write
fault, DMA error.

Action

178

Request Status (Class 0,
Opcode 3)

Check Track Format
(Class 0, Opcode 5)

Format Track (Class 0,
Opcode 6)

The Restore command positions the heads to ¢ylinder Q. It is usually
issued by the host when the drive has been turned on, or before a
format drive operation is initiated by the host.

Possible Error Codes

No error, invalid cornmand, Track O not found, drive not ready, write

- fault, DMA error.

Action

Send the host four bytes of error information for the specified drive.
The status of the last command executed may have already set the
error register but the execution of this command will not set any
new bits. If however, the command requesting the status is invalid,
then the previous command status will be lost.

Possibte Error Codes

No error, invalid command. last operation status, DMA error.

Action

Verify that the specified track is formatted with the correct number
of logical sectors. A multiple read command is issued by the HDC to
verify all the [D fields on that track and the data read back from the
disk is discarded. Retries maybe enabled if desired.

Possible Error Code

No error, invalid command, invalid sector address, IDNF error, drive
not ready, write fault, invalid LUN, seek not complete, DAM found,
uncorrectable data error, DMA error.

Action

The format track command is used for initializing the ID and data
fields on a specified track. The current contents of the specified track
are overwritten. This command is useful for marking any bad sectors
or tracks after the entire disk surface has been formatted. Assign-
ment of alternate tracks or simply not specifying bad logical address-
es is best handled by the host driver routines in the interest of flexi-
bility and reducing onboard firmware requirements.

Possible Error Codes

179

Interleave
Considerations

No error, invalid command, invalid sector address, drive not ready,
seek not complete, write fault, invalid LUN, DMA error.

During this command the sector is set up by the host to contain addi-
tional parameter information instead of data. Each sector requires a
two byte sequence. The first byte designates if a bad block (80) or a
good block (00) is to be recorded in the ID field. The second byte in-
dicates the logical sector number to be recorded on the disk, as
shown below:

Table 5-7. Interleave Factor Table

Addr. Data for an Interleave factor of:

in {Hex)

Hex 1 2 3 4
00 00 00 00 00
o1 00 00 00 00
02 80 00 00 00
03 03 09 06 0D
04 00 80 00 00
05 02 01 oC 09
06 00 00 80 00
07 03 0A 01 05
08 80 00 00 80
09 04 02 07)
OA 00 00 00 00
OB 05 0B oD CE
0C 00 00 00 00
0D 06 03 02 OA
OE 00 00 00 00
OF o7 ocC 08 06
10 00 80 00 00
11 08 04 OE 02
12 00 00 00 00
13 09 0D 03 OF
14 : 00 00 00 00
15 OA 05 09 0B
16 00 00 00 00
17 0B OE OF o7
18 00 00 80 00
19 0ocC 06 04 03
1A 00 00 00 00
1B 0D OF OA 10
1C 00 00 00 00
1D OE 07 20 0oC
1E 00 00 00 00
1F OF 10 05 08
20 00 00 00 80
21 10 08 0B 04
All XX X xX xx
Rest XX XX XX XX

180

Physical Track Format

These numbers can be from 00 to 10 (hex), or 17 sectors per track
or any number that the host wishes to specify that meets the drive
track capacity. Bad block marks are shown for sector numbers 1 and
4 in all four interleave factors illustrated. The other requirement of
the host is to provide the logical sector number. Using this scheme,
sectors can be recorded in any interleave factor desired. Byte four of
the command block then specifies the number of sectors to be for-
matted per track. Also the host is free to choose marking individual
sectors or entire tracks bad. At the end of a track format, the host
can re-issue the command, for formatting the track across head
boundaries as shown below:

Table 5-8: Interleaving Across Head Boundaries

00 01 02 03 04 ... CE OF 10
10 00 01 02 03 - -+« oD OE OF
OF 10 00 Ot 02 - .. .-« .-... 0C 0D OE
CE OF 10 00 O1 0B 0OC OD

Using the above spiral format approach, the HDC has approximately
1 mS for any processing overhead required. This 1 mSloss in the 1:1
performance across head boundaries, assuming a disk rotational
speed of 3600 r.p.m. is reasonable. Across cylinder boundaries, the
1:1 interleave factor cannot be maintained because of the step rates
involved. To format the entire disk using the Format Track com-
mand the host must update the buffer, if desired, and re-issue the
command every track formatted. This is not really a major advantage
since the host driver routines can easily re-issue the command in a
loop until the entire disk is formatted. This gives the host total fiexi-
bility to format the drive using any clever algorithms for formats
across head and cylinder boundaries instead of a canned approach.

The data fields are filled with FF hex, and the ECC is generated as
specified by the related coding options. The Gap 3 value is deter-
mined by the drive motor speed variation, data sector length, and the
interleave factor. The interleave factor is only important when 1:1
interleave is used. The formula for determining the minimum Gap 3
IS)

Gap3=2xMxS+K+E+V

motor speed variation (e.g. .01 for +/— 1%)
sector length in bytes

18 for an interleave factor of 1

2 if ECC is enabled

number of overhead bytes required for the HDC
between sectors

= 9 (for an interleave factor of 1)

<m>=ung
By

181

Read Drive (Class 0,
Opcode 8)

Write Drive (Class 0,
Opcode A)

Seek (Class 0, Opcode B)

To maximize data read back efficiency and maintain the interieave
factor of one, as closely as possible, it is required that the physical
sector numbers be offset by a sector from track to track, (see table)
so that the HDC has a sector length available for overhead to switch
heads while on the same cylinder.

Action

Read the specified number of consecutive sectors beginning with the
specified sector in the command block to the host computer. If ECC
is enabled, ECC bytes are recomputed by the HDC. After the data is
transferred to the host, the recorded ECC bytes are compared to the
generated bytes to generate the syndrome bytes. If the syndrome is
non-zero, errors have occurred. Error correction is invoked by the
HDC if two consecutive syndromes match, otherwise a maximum of
8 retries are attempted by the HDC.

Possible Error Codes

No error, invalid command, invalid sector address, invalid LUN, I[DNF
error, bad block mark, address mark not found, uncorrectable data
error, write fault, drive not ready, seek in progress, DMA error.

Action

The Write Sector command is used to write the specified number of
sectors of data from the host computer to the disk. beginning with

the specified logical address in the command block. The write oper-
ation is identical to the read, except for error handling and reading

the host status.

Possible Error Codes
No error. invalid command, invalid sector address, invalid LUN, drive

not ready, [DNF error, bad block mark, write fault, seek in progress,
DMA error. :

Action
The Seek command positions the R/W head to the cylinder contained
in the logical address. No ID field is read to verify start or end posi-

tion. Seek It is primarily used to move the R/W head to the Shipping
zone for transportation of the hard disk.

Possible Error Codes

182

No error, invalid command, invalid sector address, invalid LUN, drive
not ready, write fault, DMA error.

Set Drive Parameters Action

Class 0, Opcode C
(P) This command points to a 6 byte block of memory, specified by bytes
6 and 7 of the command block, that sets the following parameters
for both of the hard disk drives (logical units O and 1):
Table 5-9. Set Drive Parameters
D7 | D6 | D5 | D4 | D3 | D2 | D1 | DO
User Options Step Rate
0 | Num. of Heads CYL. Nums. MSN
Number of Cylinders LSB
Precompensation Cylinder / 16
Reduce Write Current Cylinder / 16
Number of Sector per Track
If the above command is not executed after power up or every reset,
the HDC will assume the following default parameters:
306. = Number of cylinders (131 hex)
4 = Number of heads
128. = Starting write precompensation cylinder
128. = Reduce write current cylinder
3mS = Steprate
5 = Maximum length of an error bust to be corrected
17. = Number of sectors per track
8. = Retries & ECC enable
The acceptable range of values for these parameters are as follows:
0-2047. Number of cylinders
0-7 Number of heads
0-255 Sector Numbers
o - 0-1023. Starting write precompensation cylinder
R YA B Maximum length of error burst to be corrected

0/8 Retries
If one of the parameters is out of range, then an “invalid command”
error code is generated by the HDC. Bytes 2 and 5 of table are self
explanatory and will not be discussed any further.

User Options

183

[nitialize Unit 1

(Opcode CC)

Change Command
Block
(Class 0, Opcode F)

This four bit field can be used to specify options as indicated below:

Bit7 = O 5 bit correction span (default value)
= 1 11 bit correction span
Bit6 = O Retries & ECC enabled (default value)
= 1 Retries & ECC disabled
Bit5 = 0 NotUsed
Bit4 = 0O NotUsed
Step Rate
~ StepRate 14 = 11.1 usec
* Step Rate 15 = 30 usec
All Others = 3 msec

Possible Error Codes

No error, invalid command, DMA error.

Action

This command with initialize or set drive parameters of unit 1 only.
This allows for the HDC to support two different drive types at the
same time. The action of this command is identical to the action of
the "Set Drive Parameter’ command noted above except that it will

effect only unit 1. For command details see section 6.2.9.

Action

The Change Command Block is used to move the location of the
command block from the default on power up to a new location.
Bytes 6 and 7 of the command block are used as indirect address
pointers for the beginning of a 7 byte block of memory organized as
follows:

Tabie 5-10. Change Command Biock Address

D7 D6 D5 D4 D3 D2 D1 DO

0 0
AZ23 High Order DMA Byte A16
A15 Mid Order DMA Byte AO8
AO7 Low Order DMA Byte 0

184

Read Long
(Class 7, Opcode 5)

Write Long
(Class 7, Opcode 6)

Since the host R/W bit, and address bits A23-A17, form the data

byte for the host LD2- counter, the DMA high and middle order ad-
dress bytes are shifted right 1 bit position before being used. Since a
copy of the previous address is not maintained, the command status
is returned to the new address location specified and not the old one.

Possibie Error Codes

No error, invalid command, DMA error.

Action

Similar to Read Sector except the ECC operation producing the
syndrome is inhibited in the HDC. Instead the HDC copies the
recorded CHECK bytes from the disk and passes them unaltered to
the host. This command is useful in debugging and verifying the ECC
hardware and software. To do this first write normally, and then
READLONG. The data or the check bits may now be altered by the
host and written to the disk using the WRITELONG command. If a
READ command were issued, then the HDC should invoke error cor-
rection on the data field and correct it as long as the error

induced is within the correction capability of the ECC polynomial.

Because there is no storage register on board. this command is im-
plemented only for diagnostic purposes. Also note that the 4 extra
checkbytes are to be accessed directly to the host. Hence the diag-
nostic tester used is required to support a 516 byte block transfer
instead of the standard 512 byte biock transfer supported by the
Amiga system. :

Possible Error Codes

No error, invalid command, invalid sector address, invalid LUN, IDNF
error, bad block mark, address mark not found, write fault, drive not
ready, seek not complete, DMA error.

Action

The Write Long command functions similarly to the Write Sector
command except the ECC operation of computing the ECC word is
inhibited in the HDC. Instead, the HDC accepts a 32 bit appendage
from the host and passes it unaltered to the DJC to be written on the
disk after the data. This command is useful for diagnostic purposes
only. It allows the generation of a sector containing a correctable
ECC error. See the Read Long command description for operation
details and system requirements.

185

Possible Error Codes
No error, invalid commands, invalid sector address. invalid LUN, [DNF

error, bad block mark, write fault, seek not complete, drive not
ready. DMA error.

186

—

¥

Section 6

Fat Agnus Chip

DESCRIPTION

This specification describes the Fat Agnus chip, an N-channel HMQOS
DMA Controiler. This IC device is able to produce. in a 68000 micro-
processor environment, DMA addresses by using a RAM Address
Generator and a Register Address Encoder. This device contains 25
DMA channel controllers, including the Blitter, Bitplanes, Copper,
Audio, Sprites, Disk and Memory refresh.

The IC accepts a 28.63636 MHz crystal clock for the purpose of
generating 7.16 MHz and 3.58 MHz system clocks, dynamic RAM in-
terface for addressing up to 1 megabyte of memory and NTSC video
synchronization pulses.

Refer to Figure 6.1 for pin configuration. Figure 6.2 for IC block dia-
gram and Table 6-1 for pin description.

This IC device is equivalent to an 8370.

Warning

Improved versions of the Amiga custom chips are under devel-
opment. These chips are intended to be software compatible
with the existing chips. Writing incorrect values to reserved
bits, accessing undefined register addresses, reading write-only
registers or excessive cleverness may lead to compatibility
problems.

187

CONFIGURATION

RD2
RD1
RDO
UCC
RSTx*
INT3
DMAL
BLS*
DBRx*
RRW
PRUW
RGENx
ASX
RAMEN*
RGA8
RGAT
RGAB
RGAS
RGAY
RGA3
RGAR2

[]
p—

T
SN
& @
&N

[
X X
JZ
Ol
o X
—
Q
x

This IC device is configured in a standard 84 pin plastic chip carrier

package.

Custom Animation Chip

]
*
Q)
I
]
(]

Fat Agnus

CCkQ =
CCK =
TEST =
USS =
MAQ =
MAl =
MA2 =
MA3 =
MAY =
MAS -
MAG =
MAT =
MR8 =
LDS% =

1
M
I
b2
~

Figure 6.1 Configuration

188

= AlS

= A1y

- Al3

- A12

= Al1

- A10

- A9

- A8

- AT

= A6

= AD

- Ay

=- A3

- A2

- Al

= Al19

- USS

= RASO=
= RAS1*
= CASU»
= CASL %

RGA1-RGAB

J\.—
M _“:-Dmv MUX MMM Register Address Decoder
B ase I
R_ RGEN= H’
z N
-)
5| @ 2
- x >
T & < 2 A“. (181 RAM Address Generator Doto Bus
| = _
. L")
0 =
o
B ,. S S S S S
o 3 .
o -]
c| & 25
Be—iT 3 K@ Register RAddress Encoder
—_ b
<3
1 [=)
ok
7 N 8 1 1 y 3 2 4
Bii Hep
mage
L
MQ - - Sprite DMA Monipuletor
8. 536 I6MH2 K Control Loglc Audlo BIt Disk end BLITTER
)] & DMA Plane Refresh pma
LH ._.._. Sprite VYertiicel Control DMA OMA Conirol MHV
T Pesition Compere . Loglic Control Control Loglc BLITTER
CCK &—— 6 "m > S - Logle Logle
s £ c
CLKO 6é—— ¥ % '%¢ 8 I
o L "o o N o W
THRZ e—— 5 2 173 A 23
a Y
DACxe—0o & a o = Bit Disk and
¢ : ° “M. _ N Count Sorils Vertlcal © Audio Piane Refresh BLITTER
r I ¥ yne. Lounters 10 p Contral Control Contral Control
ph2 TV SYNC end Light Pen ositlon en Registers Registers Aegisters Aegislers
ph CIGHT pEN | TeRletens comre]
— Reglsetl
= 2 , eglintars
o - L
O o
[+ o @
o o L
; i1 L Nl il il i
A 0ATA (ROO-AD15] V < (18) DATA BUS (L16)
@
i _ _ 3 [

Register Address Decoder

Fat Agnus Block Diagram

Figure 6.2 Block Diagram

189

PIN
NAME

A18-A1

RD15-RDO

AS*

RGEN*

RAMEN*

PRW

RRW

PIN
NUMBER

59 thru 77

1 thru 14
and 83 & 84

24

22

21

SIGNAL

Table 6-1 Pin Description

DIRECTION DESCRIPTION

IN

170

IN

ouT

Address bus—A1 to A8 are used by the processor to
select the internal registers and put an address code
on the RGA lines to select registers outside the device.

The processor uses Al to A18 to generate multi-
piexed DRAM addresses on the MA outputs. The A19
line is used to indicate which RAS line is activated. If
A19 is high, RAS1* is asserted; if low, RASO* is as-
serted.

This data bus is buffered and is used by the processor
to access the device registers. The data bus is also ac-
cessed during DMA operations.

Active low. This input is the processor address strobe
signal. When asserted, it indicates that the address
lines (A1 to A19) are valid.

Active low. When this signal is asserted along with
AS*, the processor uses Al to A8 to access one of the
device registers or put a value on the RGA outputs to
select registers outside the device.

Active low. When this signal is asserted together with
AS*, the processor is doing a DRAM access. The pro-
cessor supplies an address on the Al to A18 inputs
and the device multiplexes this address onto the MA
outputs; during the same cycle, the processor con-
trols the A19 line to select one of the RAS lines.

This signal defines the data bus transfer as a read or
write cycle to memory. The signal is only enabled
when the processor is undergoing a DRAM access. A
low on this signal signifies a processor write cycle to
memoary: a high indicates a processor read cycle from
memory.

The device controls this signal to indicate either a
DMA or processor DRAM read/write access. In both
cases, a iow on this line indicates a write operation
and a high indicates a read operation.

190

PIN
NAME

MAO-MA8

LDS*

ups*

CASL*

CASU*

RASO*

RAS1*

DBR*

PIN
NUMBER

43 thru 51

53

54

55

57

56

20

SIGNAL
DIRECTION

OuUT

ouT

ouT

OuUT

ouT

ouT

DESCRIPTION

Output bus. This @ bit output bus provides multi-
plexed addresses to DRAMSs. This bus operates in two
cyctes. The first cycle provides the DRAMs with the
row address. the second cycle with the column ad-
dress. It includes full 512K addressing for use with
256KX1 DRAMS. The IC only activates this bus when
the processor is doing a DRAM access (RAMEN* is
low) or when the device itself is performing a DMA
data transfer (DBR* is low).

Active low. This input is the processor lower data
strobe. It is enabled only during a processor DRAM
access and forces the IC to assert CASL™.

Active low. This input is the processor upper data
strobe. It is enabled only during a processor DRAM
access and forces the IC to assert CASU*.

Active low. This output strobes the column address
into the DRAMS and corresponds to the low byte of
the data word.

Active low. This output strobes the column address
into the DRAMS and corresponds to the high byte of
the data word.

Active low. This output is used to strobe the row ad-
dress into the DRAMSs. This signal is asserted only if
the processor is doing a DRAM access and A19 is low
or if the IC is performing a DMA cycle (DBR* is low).
RASO* corresponds to the lower 512K bytes of
memory.

Active low. This output is used to strobe the row ad-
dress into the DRAMs. This signal is asserted only if
the processor is doing a DRAM access and A1S is
high. The signal is not asserted when the device is do-
ing a DMA cycle. RAS1* corresponds to the upper
512K bytes of memory.

Active low. The device asserts this signal to indicate
that a DMA cycle is underway. The device performs
only DMAs on the lower 512K bytes of memory
when DBR* is low and RASO* is asserted. The only
exception is when the device is performing a DRAM
refresh, in which case RASO*, RAS1* and DBR* are all
asserted. The device also asserts both CASL* and
CASU* during DMAS except on a DRAM refresh cycle.

191

PIN PIN SIGNAL

NAME NUMBER DIRECTION DESCRIPTION

RGA8-RGA1 26thru33 OUT Qutput bus. The 8 bit output bus ailows the device
and the processor to access registers located outside
the device.

HSY* 81 This line is bidirectional and buffered. This signal is

the horizontal synchronization pulse and is NTSC
compatible. When set as an input, an external video
source drives this signal to synchronize the horizontal
beam counter.

VSy+ 79 This line is bidirectional and buffered. This signal is
the vertical synchronization pulse and is NTSC com-
patible. When set as an input, an external video
source drives this signal to synchronize the vertical

beamn counter.

cSy* 80. .. - 0QUT This signal is the composite video synchronization
pulse and is NTSC compatible.

LP* 78 ouT Active low. This input is used to indicate when the
light pen is coincident with the monitor beam.

RST* 18 IN Active low. This input initializes the device to a known

‘ state. :
INT3* 17 ouT Active low. The device asserts this line to indicate that

the blitter has completed the requested data transfer
and that the blitter is then ready to accept another
task.

DMAL 18 . IN . . . Active high. When this signal is enabled, it indicates
that an external device is requesting audio and/or disk
DMA cycles to be executed by the device.

BLS* 19 IN Active low. When this line is asserted, the device sus-
: pends its blitter operation and allows the processer to
have control of the cycle.

28MHZ 34 IN This is a 28.63636MHz input clock that provides the
master time base for the device. This clock is enabled
only when XCLKEN* is high.

XCLK 35 IN This input is an alternate master clock to the device. It

is enabled when XCLKEN* is low. This input is used to
synchronize the device with an external video source.

192

SIGNAL
DIRECTION DESCRIPTION

PIN PIN

NAME NUMBER
XCLKEN* 36 IN
CCK 40 OuT
CCKQ 39 ouT
7MHZ 38 OuT
CDAC* 37 OuT
TEST 41 IN
MODES OF OPERATION

General Information

This input is used to select the master clock to the
device. If it is high, the 2BMHz input is enabled; if
iow, the XCLK is enabled.

This signal is a clock, which is obtained after dividing
the 28.63 MHZ clock by eight. It is also known as the
color clock frequency for NTSC applications.

This clock is the CCK clock shifted by 90 degrees.

This clock is obtained after dividing the 28MHZ clock
by four.

This clock is obtained after inverting the 7MHZ clock
and shifting it by 90 degrees.

Active high. When this signal is asserted, it disables
the processor cycle and the 8370 internal registers
can be accessed on every CCK clock cycle.

This device is an address generator type IC. Its main function isas a
RAM address generator and register address encoder that produces
all DMA addresses from 25 channels.

The block diagram (Figure 6.3) for this device shows the DMA con-
trol and address bus logic. The output of each controller indicates the
number of DMA channels driving the Register Address Encoder and
RAM Address Generator.

The Register Address Encoder is a simple PLA type of structure that
produces a predetermined address on the RGA bus whenever one of
the DMA channels is active.

The RAM Address Generator contains an 18-bit pointer register for

. gach of the 25 DMA channels. [t also contains pointer restart

(backup) registers and jump registers for six (6) of the channels. A
full 18-bit adder carries out the pointer increments and adds for

jumps.

193

Blitter

The priority control logic looks at the pipe-lined DMA requests from
each controller and stages the DMA cycles based upon their pro-
grammed priority and sync counter time slot. Then it signals the pro-
cessor to get off the bus by asserting the DBR line.

The following is a brief description of the device's major operational
modes.

The procedure for moving and combining bit-mapped images in
memory received the name Bit Blit from a computer instruction that
did block transfers of data on bit boundaries. These routines became
known as Bit Blitters or Blitters. The Blitter DMA Controller is pre-
loaded with the address and size of three source images (A, B, and C)
and one destination (D) in the dynamic RAM (refer to Figure 6.3).
These images can be as small as a single character or as large as
twice the screen size. They can be full images or smaller windows of
a larger image. After one work of each source image is sequentially
loaded into the source buffer (A, B, C) they are shifted and then com-
bined together in the logical unit to perform image movement cver-
lay, masking, and replacements. The result is captured in the destina-
tion buffer (I} and sent back to the RAM memory destination
address.

This operation is repeated until the complete image has been pro-
cessed. The unit has extensive pipelining to allow for shifter and logic
unit propagation time, while the next set of source words is being
fetched.

A control register determines which of 256 possible jogic operations
is to be performed as the source images are combined and how far
they are to be moved (barrel shifted). In addition to the image com-

bining and movement powers, the Blitter can be programmed to do
line drawing or area fill between lines.

DYN SOURCE BARREL LOGIC DEST
RAM BUFFER SHIFTER UNIT BUFFER

2~ —
B|-—-{8]—{8]— |—{D]
c—{c]

D -

FIGURE 6.3. Blitter Block Diagram

194

Bitplane Addressing

DMA Channel Functions

Some computer bitmap displays are organized so that the bitplanes
for each pixel are all located within the same address. This is called

pixel addressing. If the entire data word of one address is used for a
single pixel with 8 bit planes, the data word will look like this. (num-
bers are bitplanes):

12345678---------

The data compression can be improved by packing more than one
pixel into a single address like this:

1234567812345678
or like this, if there are only 4 bitplanes:
1234123412341234

The IC device uses a bitmap technique called Bitplane Addressing.
This separates the bitplanes in memory. To create a 4 plan (16 color)
image, the bitplane display DMA channels fetch from 4 separate

areas of memory like this:

IRRERRRRRSRERERE
2022222222222222
3333333333333333
4444444444444444

These are held in buffer registers and are used together as pixels,
one bit at a time, by the display (left to right).

This technique allows reduced odd numbers of bitplanes (such as 3
or 5) while maintaining packing efficiency and speed. It also allows
grouping bitplanes into two separate images, each with independent
hardware high speed image manipulation, line draw, and area fill.

Each channel has an 18 bit RAM address pointer that is placed on the
MA memory address bus and is used to select the location of the
DMA data transfer from anywhere in 256K words (512K bytes) of
RAM.

An eight bit destination address is simultaneously placed on the reg-

ister address bus (RGA), sending the data to the corresponding reg-
ister.

195

Figure 6.4 shows a typical DMA channel: almost all channels have
RAM as source and chip registers as destination.

g

RAM 8370/EXTERNAL
REGISTER
16 BIT
DATA BUS
SOURCE -4—] DEST -q—‘
MA
RGA
ADDRgSg ADDRESS
BUS
118 BIT s BIT |
REQ ADDRESS RAM ADDRESS
ENCODER POINTER

DMA CHANNEL CONTROLLER

FIGURE 6.4. DMA CHANNEL (TYPICAL)

The pointer must be preloaded and is automatically incremented
each time a data transfer occurs.

Each controller utilizes one or more of these DMA channels for its
own purposes. The following is a brief summary of these controllers
and the DMA channels they use.

A-BLITTER (4 CHANNELS)

196

The Blitter uses four DMA channels.
three sources and one destination as
previcusly described.

Once the Blitter has been started, the
four DMA channels are synchronized
and pipelined to automatically handle
the data transfers without further
processor intervention. The images are
manipulated in memory, independent of
the display (bitpiane DMA).

B-BITPLANE {SIX (6) The bitplane controller continuously
CHAN NELS) {during dispiay) transfers display data
’ from memory to display buffer
registers. There are six DMA channels to
handle the data from six independent bit
planes. The buffers convert this bitplane
data into pixel data for the display.

Each bitplane can be a full image or a
window into an image that is up to four
times the screen size. They can be
grouped into two separate images, each
with its own color registers.

C-COPPER (ONE (1) The Copper is a coprocessor that uses
CHANNEL) one of the DMA channels to fetch its

instructions. The DMA pointer is the
instruction counter and must be
preloaded with the starting address of
Copper’s instructions.

The Copper can move (write} data into
chip registers. It can skip, jurnp, and
wait (halt). These simple instructions
give great power and flexibility because
of the following features.

When the Copper is halted, it is off the
data bus, using no bus cycles until the
wait is over. The programmed wait
value is compared to 2 counter that
keeps track of the TV beam position
(Beam Counter) and when they are
equal, the Copper will resume fetching
instructions.

It can cause interrupts, reload the color
registers, start the Blitter or service the
o audio. It can modify aimost any register
e inside or outside the IC device, based on
the TV screen coordinates given by the
Beam Counter and the actual address

encoded on the RGA bus.
D-AUDIO (FOUR {4) There are four audic channels, all of
which are located outside of the DMA
CHANNELS) Controller IC. Each controller is

independent and uses one DMA channel
from the DMA Controller IC and fetches
its data during a dedicated timing slot
within horizontal blanking. This is
accomplished by a controller asserting
the DMAL input on the DMA Controller.

197

E-SPRITES (EIGHT (8)
CHANNELS)

F-DISK (ONE (1) CHANNEL)

G-MEMORY REFRESH (ONE
(1) CHANNEL)

198

There are eight independent, Sprite
controllers, each with its own DMA
channe] and its own dedicated time slot
for DMA data transfer. Sprites are line
buffered objects that can move very fast
because of their position are controiled
by hardware registers and compacitors.

Each Sprite has two 16 bit data
registers that define a 16 pixel wide
Sprite with four colors. Each has a
horizontal position register, a vertical
start position register and a vertical stop
position register. This allows variable
vertical size sprites.

The Sprite OMA controller fetches
image and position data automatically
from anywhere in 512K of memory.

Sprites can be run automatically in DMA
mode or they can be loaded and
controlled by the microprocessor.

Each Sprite can be reused vertically as
often as desired. Horizontal reusing is
also possible with microprocessor
control.

The disk controller. which is located
outside of the DMA controller, uses a
single DMA channel from the device. The
controller uses this DMA time slot for
data transfer and can read or write a
block of data up to 128K anywhere in
512K of memory.

The refresh controiler uses & single DMA
channel with its own time slots, It places
RAS addresses on the memory address
bus (MAS) during these slots, in crder to
refresh the dynamic RAM. Memory is
refreshed on every roster line,

During the PMA no data transfer
actually takes place. The register
address bus (RGA} is used to supply
video synchronizing codes. At this time,
RASO* and RAS1* are low and CASU*
and CASL* are inactive.

s

RAM and Register
Addressing

REGISTER
DESCRIPTION

The device generates RAM addresses from two sources, the proces-
sor or from the device performing DMA cycles selected by a multi-
plexer. This multiplexer allows the processor to access RAM when
AS* and RAMEN* are both low. At this time, the device also multi-
plexes the processor address (A1-A18) onto the MA bus. The device
places Al to A8 & A17 on the MAO to MAS outputs, respectively,
during the row address time and places A9 to A16 & A18 on the
MAQ to MAO, respectively, during the column address time. The A19
line is used by the IC to determine which RAS line is to be asserted. If
A19 is low, RASO* is enabled, and if high, BAS1* is enabled. The de-
vice also senses the LDS* and UDS* inputs to determine which CAS
to drop. If LDS* is low, the IC will drop CASL¥; if UDS* is low, CASU*
is dropped.

When the device needs to do a DMA cycle, the multiplexer disables
the processor from accessing RAM by asserting the Data Bus Re-
quest line (DBR*). At this time, the device multiplexes its generated
RAM address onto the MA lines and will only make RASO* S0 low,
unless it is a refresh cycle where RAS1* will also go low. During a
DMA cycle, the IC device also asserts both CASU* and CASL*, unless
it is a refresh cycle where they both remain inactive.

The device also generates RGA addresses from either the processor
or device DMAs, each of which is selected by another internal multi-
plexer. This multiplexer allows the processor to perform a register
read/write access when AS* and RGEN* are both low. The device
then takes the low order byte of the processor address Al to A8 and
reflects its value on the RGA output bus RGA1 to RGA8. The device
will reflect the status of PRW input on the RRW output line, to indi-
cate a memory read or write operation.

During a device DMA cycle, the multiplexer prevents the processor
from doing a register access by asserting the DBR* line. The device
then places the contents of its register address encoder onto the
RGA bus.

This DMA controller device contains 97 registers that can be ac-
cessed after the following conditions have been met: the state of AS*
and RGEN* must be an active low level and the least 8 significant ad-
dress bits (A1 thru A8) must contain the valid address of the register
to be accessed.

The following is a detailed description of the register set.

REGISTER FUNCTION
AUD x LCH Audio channel x location (high 3 bits)
AUD x LCL Audio channel x focation (low 15 bits)

198

This pair of registers contains the 18 bit starting address (location)
of Audio channel x (x=0,1,2.3) DMA data. This is not a pointer reg-
ister and therefore only needs to be reloaded if a different memory
location is to be outputted.

BLT x PTH Blitter pointer to x (high 3 bits)
BLT x PTL Blitter pointer to x (low 15 bits)

This pair of registers contains the 18 bit address of Blitter source
(x=A,B,C) or dest. (x=D) DMA data. This pointer must be preload-
ed with the starting address of the data to be processed by the blit-
ter. After the Blitter is finished it will contain the last data address
(plus increment and modulo).

LINE DRAW: BLTAPTL is used as an accumulator register and must
be preloaded with the starting value of (2Y-X} where
Y/X is the line slope. BLTCPT and BLTDPT (both H and
L) must be preloaded with the starting address of the
line.

BLTx MOD " Blitter Modulox

This register contains the Modulo for Blitter source (x=A,B,C) or
Dest (x = D). A Modulo is a number that is automatically added to the
address then points to the start of the next line. Each source or desti-
nation has its own Modulo, allowing each to be a different size, while
an identical area of each is used in the Blitter operation.

LINE DRAW: BLTAMOD and BLTBMOD are used as slope storage
registers and must be preloaded with the values (4Y-
4X) and (4Y) respectively. Y/X =line slope BLTCMOD
and BLTDMOD must both be preloaded with the width
(in bytes) of the image into which the line is being
drawn (normally 2 times the screen width in words).

BLTAFWM Blitter first word mask for Source A
BLTALWM Biitter last word mask for Source A

The patterns in these two registers are “anded” with the first and
last words of each line of data from Source A into the Blitter. A zero
in any bit overrides data from Source A. These registers should be
set to all “ones” for fill mode or for line drawing mode.

BLT x DAT Biitter source x data register
This register holds Source x (x=A,B,C) data for use by the Blitter. It

is normally loaded by the Blitter DMA channel, however, it may also
be preloaded by the microprocessor.

200

LINE DRAW: BLTADAT is used as an index register and must be pre-
joaded with 8000. BLTBDAT is used for texture. It
must be preloaded with FF if no texture (solid line) is
desired.

BLTDDAT Blitter destination data register

This register holds the data resulting from each word of Blitter oper-
ation until it is sent to a RAM destination. This is a dummy address
and cannot be read by the micro. The transfer is automatic during
Blitter operation.

BLTCONO Blitter control register O
BLTCON1 Blitter control register 1

These two control registers are used together to control Blitter op-
erations. There are 2 basic modes, area and line, which are selected
by bit O of BLTCON1, as shown below.

AREA MODE (“normal™)

BIT# BLTCONO BLTCON{
15 ASH3 BSH3

14 ASH2 BSH2

13 ASH1 BSH1

12 ASAQ BSHO

11 USEA X

10 USEB X

09 USEC X

08 USED X

07 LF7 X

06 LF6 X

05 LF5 X

04 LF4 EFE

03 LF3 IFE

02 - - LF2 FCI

01 LF1 DESC
00 LFO LINE(=0)

ASH3-0 Shift value of A source

BSH3-0 Shift value of B source

USEA Mode control bit to use Surce A
USEB Mode control bit to use Source B
USEC Mode control bit to use Source C
USED Mode contrel bit to use Destination D
LF7-0 Logic function minterm select lines

EFE Exclusive fill enable

IFE Inclusive fitl enable

FCl Fill carry input

DESC Descending (decreasing address)
control bit

LINE Line mode control bit {set to 0)

201

[LINE DRAW: LINE MODE (line draw)

BIT# BLTCONO BLTCON1

15 START3 0

14 START2 0

13 START1 0

12 STARTO 0

11 1 0

10 0 0

09 1 0

08 1 0

07 LF7 0

06 LF6 SIGN

05 LF5 OVF

04 LF4 SUD

03 LF3 SUL

02 LF2 AUL

o1 - LF1 SING

00 LFO LINE(= 1)
START3-0 Starting point of line (O thru 15 hex)
LF7-0 Logic function minterm select lines

should be preloaded with 44 in order
to select the equation D= (AC + ABC).
Since A contains a single bit true
(8000), most bits will pass the C field
unchanged (not A and C}, but one bit
will invert the C Field and combine it
with texture (A and B and not C). The
A bit is automatically moved across
the word by the hardware.

LINE Line mode control bit (set to 1)
SIGN Sign flag
OVF Word overflow flag
SING Single bit per horiz. line
for use with subsequent Area Fill
SUD Sometimes Up or Down (=AUD*)
SUL Sometimes Up or Left
AUL Always Up or Left
The 3 bits above select the Octant for line draw:
ocT SUD SUL AUL
0 1 1 0
1 0 0 1
2 0 1 1
3 1 1 1
4 1 0 1
5 0 1 0
6 0 0 0
7 0 0 0

Blitter start and size (Window, width height)
202

-

This register contains the width and height of the blitter operation
(in line mode width must = 2, height = line length). Writing to this
register starts the Blitter, and should be done last, after all pointers
and control registers have been initialized.

BIT# 15,14, 13,12, 11,10, 09,08, 07, 06, 05, 04, 03, 02, 01, 00
hQ h8 h7 h6 h5 h4 h3 h2 h1 h0, w5 wd w3 w2 wl wO

h = Height = Vertical lines (10 bits= 1024 lines max)
w = Width = Horiz. pixels (6 bits =64 words = 1024 pixels max)

LINE DRAW: BLTSIZE controls the line length and starts the line
draw when written to. The h field controls the line
length (10 bits gives lines up to 1024 dots long). The
w field must be set to 02 for all line drawing.

BPL x PTH Bit plane x pointer (high 3 bits)
BPL x PTL Bit plane x pointer (low 15 bits)

This pair of registers contains the 18 bit pointer to the address of Bit
plane x (x=1,2,3,4,5,6) DMA data. This pointer must be reinitialized
by the processor or Copper to point to the beginning of Bit Plane
data every vertical blank time.

BPL1MOD Bit piane modulo (odd planes)
BPLZMOD Bit plane modulo (even planes)

These registers contain the Modulos for the odd and even bit planes.
A Modulo is a number that is automatically added to the address at
the end of each line, in order that the address then points to the start
of the next line. Since they have separate modules, the odd and even
bit planes may have sizes that are different from each other, as well
as different from the Display Window size.

BPLCONO Bit plan controf register
(miscellaneous control bits)

This register controls the operation of the Bit Planes and various as-
pects of the display.

203

BIT# BPLCONO

15 HIRES

14 BPUZ

13 BPU1

12 BPUO

11 HOMOD

10 DBLPF

09 COLOR

08 GAUD

07 X

06 X

05 X

04 X

03 LPEN

02 LACE

o1 ERSY

00 X

HIRES = High resolution (640) mode

BPU = Bit plane use code 000-110 (NONE
through 6 inclusive)

HOMOD = Hold and Modify mode

DBLPF = Double playfield (PF1 = odd.
PF2 = even bit planes)

COLOR = Composite video COLOR enable

GAUD = Genlock audio enable (mixed on

: BKGND pin during

vertical blanking)

LPEN = Light pen enable {reset on power up)

LACE = Interlace enable {reset on power up)

ERSY = External Resync (HSYNC, VSYNC
pads become inputs;
reset on power up)

COPCON Copper control register

This is & 1-bit register that when set true, allows the Copper to ac-
cess the Blitter hardware. This bit is cleared by power on reset, so
that the Copper cannot access the Blitter hardware.

BIT# NAME FUNCTION

o1 CDANG Copper danger mode. Allows Copper
access to Biitter if true.

COPJMP1 Copper restart at first location

COPJMP2 Copper restart at second location

These addresses are strobe addresses; when written to, they cause
the Copper to jump indirect using the address contained in the First
or Second Location registers described below. The Copper itself can
write to these addresses, causing its own jump indirect.

204 .

COPiLCH
COP1LCL
COP2LCH

COP2LCL

COP1INS

- Copper first location register (high 3 bits)
Copper first location register (low 15 bits)

Copper second location register (high 3
bits)

Copper second location register (low 15

bits)

Copper instruction fetch identify

This is a dummy address that is generated by the Copper whenever it
is loading instructions into its own instruction register. This actually
occurs every Copper cycle except for the second (IR2) cycle of the

MOVE instruction. The three types of instructions are shown below:

MOVE

Move immediate to dest.

WAIT Wait until beam counter is equal to, or greater than
(keeps Copper off of bus until beam position has been
reached).

SKIP Skip if beam counter is equal to, or greater than

(skips following MOVE inst. unless beam position has

been reached).

MOVE
BIT# IR1 iR2
15 X RD15
14 X RD14
13 X RD13
12 X RDi12
11 X RDI11
10 X RDiO
09 X RDO9
08 DA8 RDO8
07 DA7 RDO7
06 DA6 RDO6
05 DAS RDO5
04 DA4 RDO4
03 DA3 RDO3
02 DAZ2 RDOZ
01 DA1 RDO1
00 0 RDOO

IR1 = First instruction register

1

IR2 = Second instruction register
DA = Destination Address for MOVE instruction. Fetched during

IR1 time, used during IR2 time on RGA bus.

WAIT UNTIL
IR IR2
VP7 BFD
VP6 VEB
VP5 VES
VP4 VE4
VP3 VE3
VP2 VEZ2
VP1 VEI

VPO VEO
HP8 HE6
HP7 HE7
HP6 HEB
HPS HE5S
HP4 HE4
HP3 HE3
HP2 HEZ

1

SKIP IF
R1 IR2
VP7 BFD
VP6 VE6
VP5 VES
VP4 VE4
VP3 VE3
VP2 VE2
VP1 VEI
VPO VEO
HP8 HE6
HP7 HE7
HP6 HE6
HP5 HES
HP4 HE4
HP3 HE3
HP2 HE2

1

1

RD = RAM data moved by MOVE instruction at |R2 time directly
from RAM to the address given by the DA field.

VP = Vertical Beam Position comparison bit
HP = Horizontal Beam Position comparison bit

VE = Enable comparison (mask bit)
HE = Enable comparison (mask bit)

205

W

*NOTE BFD = Blitter finished disable. When this bit is true, the
Blitter Finished flag will have no effect on the Cop-
per. When this bit is zero, the Blitter Finished flag
must be true (in addition to the rest of the bit com-
parisons) before the Copper can exit from its wait
state, or skip over an instruction. Note that the V7
comparison cannot be masked.

The Copper is basically a 2-cycle machine that requests the bus only
during odd memaory cycles (4 memory cycles per in). This prevents
collisions with Display, Audio, Disk, Refresh, and Sprites, all of which
use only even cycles. It therefore needs (and has) priority over only
the Blitter and Micro.

There are only three types of instructions: MOVE immediate, WAIT
until, and SKIP if. All instructions (except for WAIT) require 2 bus cy-
cles (and two instruction words). Since only the odd bus cycles are
requested, 4 memory cycle times are required per instruction (mem-
ory cycles are 280 ns).

There are two indirect jump registers, COP1LC and COPZLC. These
are 18-bit pointer registers whose contents are used to modify the
program counter for initialization or jumps. They are transferred to
the program counter whenever strobe addresses COPJMP1 or
COPJMPZ are written. In addition, COP1LC is automatically used at
the beginning of each vertical blank time.

It is important that one of the jump registers be initialized and its
jump strobe address hit, after power up but before Copper DMA is
initialized. This insures a determined startup address and state.

DIWSTRT Display window start (upper left vertical-hori-
zontal position)

DIWSTOP Display window stop (lower right vertical-
horizontal position)

These registers control the Display Window size and position, by lo-
cating the upper left and lower right corners.

BIT# 15,14,13,12,11,10,09,08,07.06,05,04,03,02,01,00
USE v7v6v5v4v3v2vivOh7h6h5h4h3hZ2hl hO

DIWSTRT is vertically restricted to the upper %5 of the display
{v8=0), and horizontally restricted to the left % of the display
(h&=0).

DIWSTOP is vertically restricted to the lower 4 of the display
(v8=/=v7), and horizontally restricted to the right !/ of the display
(h8=1).

DDFSTRT Display data fetch start (horiz.position)
DDFSTOP Display data fetch stop (horiz.position)

206

These registers contro! the horizontal timing of the beginning and
end of the Bit Plane DMA display data fetch. The vertical Bit Plane
DMA timing is identical to the Display windows described above. The
Bit Plane Modulos are dependent on the Bit Plane horizontal size,
and on this data fetch window size.

Reqister bit assignment
BIT# 15,14,13,12,11,10,09,08,07,06,05,04,03,02,01,00
USE XXXXXXXXHBH7HEHS H4H3XX

(X bits should always be driven with O to maintain upward com-
patibility)

The tables below show the start and stop timing for different regis-
ter contents.

DDFSTRT (Left edge of display data fetch)

PURPOSE H8, H7, H6, HS5, H4
Extra wide (max) * o 0 t 0 1
wide ' o 0 1 1 O
normal 0o 0 1 i 1
narrow 0O t 0 0 O
DDFSTOP {Right edge of display data fetch)
PURPOSE H8, H7, H6, HS5, H4,
narrow 1 1+ 0 0 1
normal 1 i 0 1 0
wide (max) 1 i 0 1 1
DMACON DMA control write (clear or set)
DMACONR DMA control (and Blitter status) read

This register controls all of the DMA channels, and contains Blitter
DMA status bits.

BIT# FUNCTION DESCRIPTION

15 SET/CLR Set/Clear control bit. Determines if bits
written with a 1 get set or cleared.

14 BBUSY Blitter busy status bit (read only)

13 BZERO Blitter logic zero status bit (read only)

12 X :

11 X

10 BLTPRI Blitter DMA priority (over CPU micro})
—also called “Blitter Nasty”
—disables /BLS pin, preventing micro
from stealing any bus cycles while blitter
DMA is running.

207

BIT# FUNCTION DESCRIPTION

09 DMAEN Enable all DMA below.

08 DPLEN Bit Plane DMA enable.

o7 COPEN Copper DMA enable.

06 BLTEN Blitter DMA enable,

05 SPREN Sprite DMA enable.

04 DSKEN Disk DMA enable.

03 AUD3EN Audio channel 3 DMA enable.
02 AUDZEN Audio channel 2 DMA enable,
o1 AUD1EN Audio channel 1 DMA enable.
00 AUDOEN Audio channel 0 DMA enable.

DSKPTH Disk pointer (high 3 bits)
DSKPTL Disk pointer {low 15 bits)

This pair of registers contains the 18-bit address of Disk DMA data.
These address registers must be initialized by the processor or Cop-
per before disk DMA is enabled.

REFPTR Refresh pointer

This register is used as a Dynamic RAM refresh address generator. It
is writeable for test purposes oniy, and should never be written by
the microprocessor.

SPRxPTH Sprite x pointer (high 3 bits)
SPRxPTL Sprite x pointer (low 15 bits)

This pair of registers contains the 18-bit address of Sprite x
(x=0,1,2.3.4,5,6.7) DMA data. These address registers must be ini-
tialized by the processor or Copper every vertical blank time.

SPRxPQS Sprite x vertical-horizontal position data
SPRxCTL Sprite x vertical-horizontal

These 2 registers work together as position, size and feature 3prite
control registers. They are usually loaded by the Sprite DMA channel,
during horizontal blank; however, they may be loaded by either pro-
cessor any time.

SPRxPOS register:

BIT# SYM FUNCTION

15-08 Sv7-5V0 Start vertical value. High bit (5V8) is in
SPRxCTL reg. below.

07-00 SHB8-SH1 Start horizontal value. Low bit (SHQ) is in
SPRxCTL reg. below.

SPRxCTL register (writing this address disables sprite horizontal
comparator circuit):

208

u—

AGNUS NOTES

BIT# SYM FUNCTION

15-08 EVZ-EVO End (stop) vert.value.low 8 bits

07 ATT Sprite attach control bit {odd sprites)

06-04 X Not used

02 Sva Start vert. value high bit

01 EV8 End {stop) vert. value high bit

00 SHO Start horiz. value low bit

1

VPOSR Read vertical most significant bit (and frame
flop)

VPOSW Write vertical most significant bit (and frame
flop)

BIT# 15,14,13,12,11,10,09,08,07,06,05.04,03,02,01,00

USE LOF V8

LOF = Long frame (auto toggle control bit in BPLCONO)

VHPOSR Read vertical and horizontal position of beam
or lightpen

VHPOSW Write vertical and horizontal position of beam
or lightpen

BIT# 15,14,13,12,11,10,09,08,07,06.05,04,03.02,01,00
USE V7VeV5V4V3V1VOH8H7HEH5H4H3HI1
RESOLUTION = 1/160 OF SCREEN WIDTH (280 NS}

1) The Agnus pointer registers are updated via a pipelining scheme
that requires that a register not be accessed on two contiguous
cycles. h

This precludes the use of “single operand” blitter functions that
might seem possibie based on the register descriptions.

Caution is also required to prevent processor access to registers
that may be subject to concurrent DMA access.

209

DMA Time Slot Allocation/Horizontal Line

NOTES '
1) These operations only take slots if the associated operation is be-

ing performed

Note: Copper Data Move instructions require 4 slots.
Copper Wait instructions require 6 slots.

2) This cycle O appears to exclude one of the memaory refresh cycles.
This is not the case.

Actual system hardware demands certain specific values for data
fetch start and display start. Therefore this timing chart has been
“adjusted” to'match those requirements.

(:}D Slots ovalioble for Bititer, Copper, ond 88000

o {b) T T
/% // Z // 7 7 N N
i
¢RZAZ Y

210

RII:AA T;g[llel lﬁlgl.”tizontal Hardware stop installed here. Data fetch cannot begin any

. ocat : sooner than cycle 18. This allows the user to wipe out most of
Line (Cont’d) the sprites if desired (by defining an extra-wide display) but
leaves the audio and disk DMA untouched.

&

: .

Sprite DMAT TThese operations only take slots if the
(2 words/channel) associated operation is being performed

28 30 aa
-2 i -1

N el [l SEE
\ \ \ \ con nue s
§ § §\ § \\ \\ s ‘n,;:;{:;‘

4

Some sprites are unusable if the display starts early due to an
extra word(s) associated with a wide display and/or horizontal
scrolling. In this case, the bit-plane DMA steals the cycles nor-
mally allocated to the sprites, as illustrated above.

211

DMA Time Slot
Allocation/Horizontal
Line (Cont’d)

Data fetch start can only be specified at even multiples of 8
clocks. This is the clock position which should be specified for
the normal width display. (20 word fetch for 320 pixel, 40
—| word fetch for 640 pixel width).

Five clocks must occur before the data which was fetched for a
particular position can appear onscreen. For example, if data
fetch start is specified as 38, it will not be available for display
until clock number 45.

- -
L . i‘ ?otc 'a\.chaaconc
or cyctle
3e 40 Y 48
1 2 '
Ja 1 "
(] L 4 I 1icontinues
o 8 8Bar beilow)
T
-1 ! | 2 3
320 mode BtiL-Plane DMA, by plane
JILLY
::; 640 mode Bli-Plone DMA, by plone

48 50 58

Noraal Res.

CYCLES
5-19 agnme

| R } as cycle 4

High Res.

BC._;;:LES
- SORS
3 s ' 8 7 : as cycle 7

A hardware data-fetch stop has been installed at count D8 so as
to prevent the bit-plane data-fetch from overrunning the time
allotted for the memory refresh or disk DMA.

0o []:] EO
20 21
End of
4] 2] t] i Hortzontal
HH = Line Data
H Fetch Cycle
e 39 40 41

212

The 8520 Chip

— e —_—

uss [«] CNT
pA0 [] 0] SP

PAI E E RSO
PA2 Z E RS1
PA3 [s] %] RS2
PA4 E 5] Rs3
PAS [7 z RES
PA6 [E DBO
PA7 :9 8520 121 DBI
PBO [v| (»]| DB2
PB1 [0 ~] DB3
PB2 [»] DB4
PB3 E zzj DB5
PB4 |: 2| DB6
PB5 [5] DB7
PB6 E z 02

PB7 [v] »| FLAG
PC E =] Cs

TOD [=] RW
vee [af] 1RO

. Figure 6.5. 8520 Pin Configuration

213

Do-D7

O

DATA BUS BUFFERS
(N
PA
| wurrens K> PAOPAT
sp 1 SERIAL
SP =™ purren POAT (
DORA
CNT «—] N7 4 — > if—l;a —> PC
BUFFER BUFFE
)
PRB | BUFFERS D PBo-PB7
T 100 T0D/
oD BUFFER ALARM K -/]
DDRB
-
» TIMER B
— CRB
FLAG BUFFER
: ¢ . —
— 1 TIMER A
— R0 INF/
IRQ BUFFER MASK
CRA
CHIP ACCESS CONTROL
{iw- - pAW g2 CS RS3 RS2 RS1 RSO RES

Figure 6.6. 8520 Block Diagram

214

WRITE TIMING DIAGRAM

--------------- TCYC === rrrmmccmaccccssa s e ===
TR-4 p-------- TCHW .« oo e o = = = 4 J --- TF TCLW
02 INPUT —
........... TPD o v - - - -
PERIPHERAL
DATA OUT
------ TWCS -~ = - - - 4
cs / .
- 1 TADS) - - TADH - A -
RS3-RS0O
- - - -TRW -,
RW ———] S IRWH. - -
' |
e.v- TDH
DATA IN
Dg7-DE0
R >
READ TIMING DIAGRAM
02 INPUT —_—}
__TPS -
PORT IN >
------ TWCS- - - - - 4
cs N d P
.-} --TADS TADH} - - -
RS3-RS0 \
l
R/W L -« = - TCO -
TRWS J-I L - - T1TRWH} ---
L — }
L. TACC ____ _-TDR.I

Figure 6.7. 8520 Timing Diagrams

215

INTERFACE SIGNALS

02-Clock Input

CS-Chip Select Input

R/W-Read/Write Input

RS3-RS0 — Address
Inputs

DB7-DB0 — Data Bus
Inputs/Outputs

IRQ-Interrupt Request
Output

RES-Reset Input

The 02 clock is a TTL compatible input used for internal device oper-
ation and as a timing reference for communicating with the system
data bus.

The CS input controls the activity of the 8520. A low level on CS
while 02 is high causes the device to respond to signals on the R'W
and address (RS) lines. A high on CS prevents these lines from con-
trolling the 8520. The CS line is normally activated (low) at 02 by
the appropriate address combination.

The R/W signal is normally supplied by the microprocessor and con-
trols the direction of data transfers of the 8520. A high on R/W indi-
cates a read (data transfer out of the 8520), while a low indicates a
write {data transfer into the 8520).

]

The address inputs select the internal registers as described by the
Register Map. S o

The eight bit data bus transfers information between the 8520 and
the system data bus. These pins are high impedance inputs unless CS
is low and R/W and 02 are high, to read the device. During this read,
the data bus output buffers are enabled, driving the data from the
selected register onto the system data bus.

IRQ is an open drain output normally connected to the processor in-
terrupt input. An external pullup resistor holds the signal high, allow-
ing multiple 1RQ-outputs to be connected together. The IRQ output
is normally off (high impedance) and is activated low as indicated in
the functional description.

A low on the RES pin resets all internal registers. The port pins are
set as inputs and port registers to zero (although a read of the ports
will return all highs because of passive pullups). The timer control
registers are set to zero and the timer latches to all ones. All other
registers are reset to zero.

216

REGISTER MAP

RS3 RS2

— et o e omk ek e DO OO OO OO

NN Yo Y o X <~ RS Yo X = X o X o)

FUNCTIONAL
DESCRIPTION

I/O Ports (PRA, PRB,
DDRA, DDRB)

Handshaking

RS1

NN Y = RN . W R o I o R = K =)

RS0 REG
0 0 PRA Peripheral Data Reg. A
1 1 PRB Peripheral Data Reg. B
0 2 DDRA Data Direction Reg. A
1 3 DDRB Data Direction Reg. B
0 4 TALO Timer A Low Register
1 5 TAHI Timer A High Register
0 6 TB LO Timer B Low Register
1 7 TB HI Timer B High Register
0 8 Event LSB
1 9 Event 8-15
0 A Event MSB
i B No Connect
0 C SDR Serial Data Register
1 D ICR Interrupt Control Register
0 E CRA Control Register A
1 F CRB Control Register B

Ports A and B each consist of an 8-bit Peripheral Data Register (FR)
and an 8-bit Data Direction Register (DDRY). If a bit in the DDR is set
to the corresponding bit in the PR is an output if a DDR bit is set to
zero, the corresponding PR bit is defined as an input. On a READ. the
PR reflects the information present on the actual port pins (PAO-
PA7, PBO-PB7) for both input and output bits. Port A has both pas-
sive and active pullup devices, providing both CMOS and TTL com-
patibility. It can drive 2 TTL loads. Port B has only passive pullup
devices and has a much higher current-sinking capability.

Handshaking on data transfers can be accomplished using the PC
output pin and the FLAG input pin. PC will go low on the 3rd cycle
after a PORT B access. This signal can be used to indicate "data
ready’” at PORT B or “data accepted” from PORT B. Handshaking on
a 16-bit data transfers (using both PORT A and PORT B) is possible
by always reading or writing PORT A first. FLAG is a negative edge
sensitive input which can be used for receiving the PC output from
another 8520 or as a general purpose interrupt input. Any negative
transition on FLAG will set the FLAG interrupt bit.

217

Reg Name D7
0 PRA PA7
1 PPB PB7
2 DDRA DPA7
3 DDRB DPB7

Interval Timers (Timer
A, Timer B)

Start/Stop

PB On/Off

Toggle/Pulse

One-Shot/Continuous

D6 D5 D4 D3 D2 D1 DO
PAG PA5 PA4 PA3 PAZ PA1 PAC
PBG PBS PB4 PB3 PB2 PB1 PBO
DPA6 DPAS DPA4 DPA3 DPAZ DPA1 DPAO

DPB6 DPB5 DPB4 DPB3 DPBZ DPB1 DPBO

Each interval timer consists of a 16-bit read-only Timer Counter and
a 16-bit write-only Timer Latch. Data written to the timer are
latched in the Timer Latch, while data read from the timer are the
present contents of the Timer Counter. The timers can be used inde-
pendently or linked for extended operations. The various timer
modes allow generation of long time delays, variable width pulses,
pulse trains and variable frequency waveforms. Utilizing the CNT in-
put, the timers can count external pulses or measure frequency,
pulse width and delay times of external signals. Each timer has an as-
sociated control register, providing independent control of the fol-
lowing functions: :

A control bit allows the timer to be started or stopped by the micro-
processor at any time.

A control bit allows the timer output to appear on a PORT B output
line (PB6 for TIMER A and PB7 for TIMER B}. This function over-
rides the DDRB control bit and forces the appropriate PB line to an
output.

A control bit selects the output applied to PORT B. On every timer
underflow the output can either toggle or generate a single positive
pulse of one cycle duration. The toggle output is set high whenever
the timer is started and is set low by RES.

A control bit selects either timer mode. In one-shot mode, the timer
will count down from the latched value to zero, generate an inter-
rupt, reload the latched value, then stop. In continuous mode, the
timer will count from the latched value to zero, generate an inter-
rupt, reload the latched value and repeat the procedure continuously.
In one-shot mode; a write to Timer High (registers 5 for TIMER A, 7
for TIMER B) will transfer the timer latch to the counter and initiate
counting regardless of the start bit.

218

p—

Force Load
Input Mode
READ (TIMER)
REG Name
4 TALO TAL7
5 TAHlI TAH7
6 TB LO TBL7
7 TBHI TBH7
WRITE (PRESCALER)
REG Name
4 TALO PAL7
5 TAHI PAH7
6 TBLO PBL7
7 TBHI PBH7
TOD

A strobe bit allows the timer latch to be loaded into the timer
counter at any time, whether the timer is running or not.

Control bits allow selection of the clock used to decrement the timer.
TIMER A can count 02 pulses or external pulses applied to the CNT
pin. TIMER B can count 02 pulses, external CNT pulses, TIMER A un-
derflow pulses or TIMER A underflow pulses while the CNT pin is
held high.

The timer latch is loaded into the timer on any timer underflow, on a
force load or following a write to the high byte of the prescaler while
the timer is stopped. If the timer is running, a write to the high byte
will load the timer latch, but not reload the counter.

TALE TALS TAL4 TAL3 TALZ TAL1 TALO
TAH6 TAH5 TAH4 TAH3 TAHZ TAHI1 TAHO
TBL6 TBLS TBL4 TBL3 TBLZ TBL1 TBLO
TBH6 TBHS TBH4 TBH3 TBH2 TBHI TBHO

PALE PALS PAL4 PAL3 PALZ PAL1 PALO
PAH6 PAHS5 PAH4 PAH3 PAHZ PAHI PAHO
PBL6 PBL5 PBL4 PBL3 PBLZ PBL1 PBLO
PBH6 PBHS PBH4 PBH3 PBHZ PBH1 PBHO

TOD consists of a 24 bit binary counter. Positive edge transitions on
this pin cause the binary to increment. The TOD pin has a passive
pull-up on it. A programmable ALARM is provided for generating an
interrupt at a desired time. The ALARM registers are located at the
same addresses as the corresponding TOD register. Access to the
ALARM is governed by a Control Register bit. The ALARM is write-
only; any read of a TOD address will read time regardless of the state
of the ALARM access bit.

A specific sequence of events must be followed for proper setting
and reading of TOD. TOD is automatically stopped whenever a write
to the register occurs. The clock will not start again until after a
write to the LSB Event Register. This assures TOD will always start
at the desired time. Since a carry from one stage to the next can oc-
cur at any time with respect to a read operation, a latching function
is included to keep all Time of Day information constant during a

219

READ
REG NAME
8 LSBEVENT
9 EVENT8-15
A MSBEVENT
WRITE
CRB7=0
CRB7 =1 ALARM
(SAME FORMAT AS READ)
Serial Port (SDR)

E7
E15
EZ23

read sequence. All TOD registers latch on a read of MSB event and
remain latched until after a read of LSB Event. The TOD clock contin-
ues to count when the output registers are latched. If only one regis-
ter is to be read, there is no carry problem and the register can be
read “on the fly”, provided that any read of MSB Event is followed
by a read of LSB Event to disable the latching.

E6 ES E4 E3 E2 E1 EO
E14 E13 E12 E11 E10 E9 E8
E22 EZ21 E20 E19 E18 E17 E16

The serial port is a buffered, 8-bit synchronous shift register system.
A control bit selects input or output mode. In input mode, data on
the SP pin is shifted into the shift register on the rising edge of the
signal applied to the CNT pin. After 8 CNT pulses, the data in the
shift register is dumped into the Serial Data Register and an inter-
rupt is generated. In the output mode, TIMER A is used for the baud
rate generator. Data is shifted out on the SP pin at '/ the underflow
rate of TIMER A. The maximum baud rate possible is 02 divided by
6, but the maximum useable baud rate will be determined by line
loading and the speed at which the receiver responds to input data.
Transmission will start following a write to the Serial Data Register
(provided TIMER A is running and in continuous mode). The clock
signal derived from TIMER A appears as an output on the CNT pin.
The data in the Serial Data Register will be loaded into the shift reg-
ister then shift out to the SP pin when a CNT pulse occurs. Data
shifted out becomes valid on the falling edge of CNT and remains val-
id until the next falling edge. After 8 CNT pulses, an interrupt is gen-
erated to indicate more data can be sent. If the Serial Data Register
was loaded with new information prior to this interrupt, the new
data will automatically be loaded into the shift register and transmis-
sion will be continuous. If no further data is to be transmitted, after
the 8th CNT pulse, CNT will return high and SP will remain at the
level of the last data bit transmitted. SDR data is shifted out MSB
first and serial input data should also appear in this format.

- The bidirectional capability of the Serial Port and CNT clock allows

several devices to be connected to a common serial communication
bus on which one acts as a master, sourcing data and shift clock,

_ while all other chips act as slaves. Both CNT and SP outputs are open

220

REG NAME

C SDR s7
Interrupt Control (ICR)
READ (INT DATA)
REG NAME

D IRA IR

WRITE (INT MASK)

REG NAME
D IRC SIC

0 0 FLG SP

X X FLG SP

drain, with passive pullups, to allow such a common bus. Protocol for
slave/master selection can be transmitted over the serial bus, or via
dedicated handshaking lines.

S6 S5 S4 53 52 S1 SO

There are five sources of interrupts on the 8520: underflow from
TIMER A, underflow frorn TIMER B, TOD ALARM, Serial Port full/
empty and FLAG. A single register provides masking and interrupt
information. The Interrupt Control Register consists of a write-only
MASK register and a read-only DATA register. Any interrupt which is
enabled by the MASK register will set the IR bit (M5B) of the DATA
register and bring the IRQ pin low. in a multi-chip system, the iR bit
can be polled to detect which chip has generated an interrupt re-
quest. '

The interrupt DATA register is cleared and the IRQ line returns high
following a read of the DATA register. Since each interrupt sets an
interrupt bit regardless of the MASK, and each interrupt bit can be
selectively masked to prevent the generation of a processor inter-
rupt. it is possible to intermix polled interrupts with true interrupts.
However, polling the IR bit will cause the DATA register to clear,
therefore, it is up to the user to preserve the information contained
in the DATA register if any polled interrupts were present.

The MASK register provides convenient control of individual mask
bits. When writing to the MASK register, if bit 7 (SET/CLEAR) of the
data written is a ZERQ, any mask bit written with a one will be
cieared, while those mask bits written with a zero will be unaffected.
If bit 7 of the data written is a ONE, any mask bit written with a one
will be set, while those mask bits written with a zero will be unaf-
fected. In order for an interrupt flag to set IR and generate an Inter-
rupt Request, corresponding MASK bit must be set.

ALRM B TA

ALRM TB TA

221

Control Registers There are two control registers in the 8520: CRA and CRB. CRA is
associated with TIMER A and CRB is associated with TIMER B.

The register format is as follows:

CRA:

BIT NAME FUNCTION

0 START 1 =START TIMER A. 0=STOP TIMER A. This bit is automatically reset

- when underflow occurs during one-shot mode.

1 PBON 1 =TIMER A output appears on PB6, 0= PB6 normal operation

2 OUTMODE 1=TOGGLE, 0= PULSE

3 RUNMODE 1 =0NE-SHOT, 0=CONTINUOUS

4 LOAD 1 = FORCE LOAD (this is a STROBE input, there is no data storage, bit 4 will
always read back a zero and writing a zero has no effect.

5 INMODE 1 =TIMER A counts positive CNT transitions, 0= TIMER A counts 02

puises.

6 SPMODE 1 = SERIAL PORT output (CNT sources shift clock). O =SERIAL PORT input
(external shift clock required).

7 TODIN 1 =50 Hz clock required on TOD pin for accurate time.
0 =60 Hz clock required on TOD pin for accurate time.

CRB:

BIT NAME FUNCTION

(Bits CRBO-CRB4 are identical to CRAO-CRA4 for TIMER B with the excep-
tion that bit 1 controls the output of TIMER B on PB7).

56 INMODE Bits CRBS and CRB6 select one of four input modes for TIMER B as:

CRB6 CRB5 .
0 0 TIMER B counts 02 pulses
0 1 TIMER B counts positive CNT transitions
1 0 TIMER B counts TIMER A underflow pulses
1 1 TIMER B counts TIMER A underflow pulses
while CNT is high
7 ALARM 1 =writing to TOD registers set ALARM. O =writing to TOD registers sets
TOD clock.

222

Section 7.1

Clock/Calendar Information

The clock/calendar is based on the OKI MSM6242RS Direct Bus
Connected-Type Real Time Clock Chip.

The A2000 features a real time clock with a perpetual calendar
which is capable of reading and writing “YEAR", “MONTH", “DAY",
“WEEK”, “HOUR", "MINUTE"” and “SECOND". This time clock is a
peripheral 1C, connected directly by means of a bus. [t is standard on
the A2000. and can be added as an option to the AS0Q (included in
the AS01 Memory Expander).

An interface between the time clock and a microcomputer uses 4 of
data bus lines, 4 address bus lings, 3 contro! bus lines and 2 chip se-
lect pins, and performs time setting, reading and other operations.

The clock function covers second, minute, hour, day, month, year and
day of week. In addition, other functions such as selection of a 24-
hour time and a 12-hour time system, automatic adjustment of leap
year in the Christian Era and 30-second correction by means of soft,
periodical interruption (or periodical wave-form output) and stop/
start of time counting.

The clock-calendar is a CMOS device, so there is low power con-
sumption.

A crystal used is capable of 32,768 KHz for a consideration over
time counting during battery backup.

When installed, the clock is located in memory at $DCOGCO0.

Clock Warning

The addresses used by the real time clock chip access the custom chip
registers without the memory expansion/real time clock module.
When probing to test for the existence of the clock, care must be
taken to avoid unintentional changes to the custom chip register. The
test used by the setclock utility references an address that maps to
either the seconds register or a static read-only chip register, then
checks to see if the clock “ticks.”

Note: C912 can be used as a slow/fast control to tune the clock to
best effect.

REGISTER TABLE

Gt
e Data
2 5 5
[2 =
3 E® Count
< | Ay | A | Ay A | Z 2| D D, D, Dy value Description
0 0 0 0 S, Sg Sy S; S 0 ~ 9 | 1-second digit register
1 0 0 1 S * San Sx S 0 ~ 5 | 10-second digit register
2 0 0 1 0 MI, mig Miy mis mi, 0~ 9 | l-minute digit register
3 0 0 1 1 Mo * Mizg | mizg | miyp [O~ 5 | 10-minute digit register
4 0 i 0 0 H; hg hy h, Iy 0 ~ 9 | 1-hour digit register
5 0 1 0 1 Hio * PM/ hao hio 0~ 2 | PM/AM, 10-hour digit
AM orQ register
to 1
6 0 1 1 0 Dy dg ds d; d, 0~ 9 | 1-day digit register
7 0 1 1 1 Dyo * * dao dig 0 — 3 | 10-day digit register
8 1 0 0 0 MO, [mog moy mo; moy 0~ 9 | I-month digit rcgister
9 1 0 0 1 | MOy * * * moye | 0~ 1 | 10-month digit register
A 1 0 1 0 Y, ¥a ¥4 ¥z ¥ 0~ 9 [l-year digit register
B 1 0 1 1 Yo Y0 Ya0 Y20 Y10 0 ~ 9 | 10-year digit register
C 1 1 0 0 W * w w w 0~ 6 | Week register
D | | 0 1 Cp 30 IRQ [BUSY [HOLD _— Control Register D
sec. |FLAG
ADJ
E 1 1 1 0 Cg 1 to |ITRPT|HASK| — Control Register E
/STND
F 1 1 1 1 Ce | TEST | 24/ |STOP |REST — Control Register F
12

® D—low level 1-high level
® REST-RESET
® [TRPT/STND-INTERRUPT/STANDARD

Note 1: You have the option to write data into the bit*. However,
this data is treated as O 1nternally In addition, the bit* is al-
ways read as 0.

Note 2: You can write 1 into the IRQ) FLAG bit and O or 1 into the
BUSY bit. They are not executed, but can be read.

Note 3: It is possible to read and write all bits other than bit* and
BUSY bit. However, only C can be written into IRQ FLAG.

More information on the clock/calendar may be found in the OKI

MSM6242RS Direct Bus Connected-Type Real Time Clock app.
notes.

224

Section 7.2

Power Budgets

B2000 POWER BUDGET

CONSUMPTION:

A2000/B2000 POWER SUPPLY:

All of the specifications herein are suggested. When it comes right
down to it, the machine is being powered by a well-defined supply.
the specifications of which will follow. If you're careful not to exceed
the suggested load for any port, you'll be abie to fully load every
port. However, some of the internal ports can draw more than the
suggested amount; for example, an 8 megabyte expansion memory
card for the 100 pin bus may draw more than the suggested 2.5
Amps at +5VDC. The connector is capable of supplying more with-
out darnage, but the extra current must be carefully worked into the
system power budget. Any hardware add-on device that draws more
than the suggested amount must state this clearly. External ports
typically have a true maximum available, not a suggested; budgeting
should apply to internal items only.

SYSTEMWIDE

VOLTAGE LIMIT DESCRIPTION

+ 5VDC 20.0 Amps Main + 5 Voltage supply

+ S5 USER 0.5 Amps Protected +5 for externals

- 5VDC 0.3 Amps Negative 5 Volt supply

+12VDC 8.0 Amps Main + 12 Voltage supply

+12USER Protected + 12 for externals,
derived from main + 12

—12VDC 0.3 Amps Main — 12 Voltage supply

—-12USER Protected — 12 for externals,

derived from main — 12 _

Everybody wants power. Here's what can be taken, based on your particular setup: you
get what's left over:

MAIN SYSTEM: +5vDC —5VDC +5USER +12vDC —12VDC
Motherboard 2.5A - . 50mA 50mA
Internal 3'4" Floppy [1] 250mA - 350mA
Internal 5%4" Floppy [2] 500mA - 500mA
Internal 3'2" Hard Disk [2] 750mA 1.0A
Internal 5%4" Hard Disk [2] 1.0A 1.5A -

EXTERNAL PORTS:
Video Port

- 10mA 100mA 100mA

Floppy Port [1] 250mA - 350mA
Paralle] Port [3] - - 10mA - -
Serial Port - 2bmA 25mA
Keyboard Port [4] 250mA
Mouse Port - - 50mA - -
INTERNAL SLOTS:
CoProcessor Slot [6] 2.0A 40mA .o 40mA 35mA
Expansion Sict [6] 2.0A 40mA - 40mA 35mA
Extra PC Bus Slots [7] 0.5A 10mA 40mA 15mA
Video Slot [8] 1.0A 40mA 40mA

NOTES:

[1] Expected typical consumption. This is very device dependent;
consult the manufacturer’s specification for particular floppy
disks. The starting current is expected to be around 400mA for
+12V.

[2] Expected typical consumption. This is very device dependent;
consult the manufacturer’s specification for particular disks.
Starting current on the + 12V supply for most disk drives can
be as much as twice the operating current.

[3] 47 Ohm Series Resistor limits current.

[4] Expected typical consumption. Current from this port is limited.

[5] Each port.

[6] Each slot. The physical connection can handle 4 Amps; if a 4 Amp
device is used in one slot, other slots cannot supply 2.5 Amps
each, of course; this requires a total system power budget to be
constructed.

[7] Shared PC expansion slots should be considered part of the 100
pin connector that they share. If the 100 pin connector is un-
used, the power suggested for that connector can be used in-
stead of the PC bus, The connectors, like all expansion connec-
tors, are capable of delivering 4 Amps if proper whole-system
budgeting is done. The specification here is for both of the non-
overlapping PC slots taken together.

[8] Like expansion slots the video slot is capable of supplying 4. If a
4 Amp device is used, it must be worked into the total system
power budget.

226

AS500 Power Budget

PARALLEL PORT:

10mA from pin 14 (+5V)
(47¢) series resistor to prevent damage if printer grounds this line)

SERIAL PORT:

20mA from pin 9 (+ 12V}

20maA from pin 10 (— 12V)

(474 series resistor to limit current)

VIDEO PORT:

100mA from pin 23 (+ 5V) No

100mA from pin 22 (+ 12V) current
10mA from pin 21 (— 12V} limiting

JOYSTICK PORTS (TOTAL)

50mA from pins 7 (+ 5V)
(4.7€} current limit)

EXPANSION PORT:

300mA from pins 5 and 6 (+5V) No
50mA from pin 10 (+ 12V) current
10mA from pin 8 (— 12V) limiting

227

Section 7.3

A2000 PAL Equations

PaL20L8’ PAL DESIGN SPECTFICATION
PART NO.: 380 XXX-01 DESCRPT.:PALEN REV.2 FRANK ULLMANN 03-09-86
MEM- AND DTACK-DECODER FOR A2500 MAINBOARD (U26) ASSY 380...

COMMODORE BSW P! PRELIMENARY (1

A23 AZ22 A21 A20 A19 A1B PRW AS DBR OVL OVR GND
C1 C3% VPA MYRAME CLKE RGAE RE DTACK BLS ROME XRDY VCC

1F (QVR) /VPA = fAS*A23*sA22*A21) ; PERIPHERAL ACCESS
o : $ADDOOO-BFFFFF
JMYRAME = fAS*DTACK*AZI~AZZ*A21*OVR*/C1*C3 : SEQOOQQ-FFFFFF

+ FASYDTACK* FAZ3*/A22*fA21*OVR*OVL*/C1*C3 ; $000000-1FFFFF IF
; OVL=H, OVR=H !

+ JAS*DTACK*A23*A22%/AZ1*A20*A19*/A1B*OVR*/C1*C3 ; $DBO00D-DBFFFF

+ /MYRAME*/C1

+ JMYRAME*/C3

/RE = DBR*/AS*DTACK*/A23*/A22%/A21*OVR*/OVL* ; $000000-1FFFFF IF
fC1*=C3 ; OvVL=L, OVR=H !
+ fRE*/CH
+ JRE*/C3

1F (OVR) /DTACK =
FAS*/A23*[AZ2*R2Z1*KRDY
+ JAS*/AZI*AZZ2*XRDY
+ JAS*AZI*A22% /A2 1*XRDY
+ fMYRAME*XRDY*/C3

$200000-3FFFFF EXP RAM
$400000-7FFFFF » M
$800000-9FFFFF » v
$000000-1FFFFF OVL=H
AND $EQOCOO-FFFFFF
$000000-1FFFFF OVL=L
$CO0000-D7FFFF

AND $DCO0O0O-DFOOO0

1w my w

+ [RE*/C3
+ /RGAE*/C3

my wa we

e

+ /DTACK*/AS*XRDY

FRGAE = DBR*/AS*DTACK*A2I*AZ2*/A2T1*A20* /A9 OVR*/C1*C3;$D00000-$D7FFFF
+ DBR*/AS*DTACK*A23*A22*/A21*AZU*A19*A1B‘DVR‘/C!*C3;$DC0000-SDFFFFF
+ DBR*/AS*DTACK*A23*A22*/AZ1*/A20* OVR*/C1*C3;$C00000-$CFFFFF
+ fRGAE*/C1
+ /RGAE*/C3

/BLS = fAS*DTACK*/A23%/A22* FA21%DVR* /OVL*®/C1*C3 ; $O00000-1FFFFF OVL=L
+ JAS*DTACK*A23I*AZ22* /A21*OVR*/C1*CE ; SCO00CO-DFFFFF
+ /BLS*/C1
+ /BLS*/C3

229

JROME = /AS*AZ3*A22*A21*AZ0*A19*OVR*PRW $FB0000- FFFFFF
JAS*AZI*AZ2*A21%/AZ0* /A19*OVR*PRW ; $E0000D E7FFFF
FAS*FA23%/R22%JA21* /A20%/AT9*OVRAOVL*PRW ; $000000-O7FFFF
JASY/A23%/A22* /A2 1*A20YAT9*OVL*OVR*PRW ; $1B0000- 1FFFFF

+ o+
-

+

/CLKE = JAS*TAZI*AZZ*/AZ1*A20TAI9* /ATB*OVR ; $DB0000-DBFFFF
DESCRIPTION
THE CLOCK IS NOW TILED THROUGHOUT THE SPACE $DBCO0O-DBFFFF. IF
MORE PRECISE SELECTION TC $DBOQOT $DBFFFF [§ REALLY NEEDED, THENW
THIS MUST BE DONE EXTERNALLY USING THE /CS INPUT ON THE CLOCK CRIP,
DTACK FOR THE CLOCK IS HANDLED N THE MYRAME EQUATION BECAUSE THE DTACK

EQUATION ALREADY HAS 7 OR TERMS! THIS MEANS THAT CLOCK ACESSES WILL BE
SYNCHRONIZED TO VIDED CYCLES, BUT- THIS SHOULD CREATE NO MAJOR PROBLEMS.

THE TMPLEMENTATION OF ROME/MYRAME MATCHES THE A1000 - 1T MIGHT BE
DESIRABLE TO HAVE THE ADDRESS RANGE IN MYRAME MATCH THE ROM SELECT
ADDRESS RANGE. ..

MYRAME OUTPUT IS NOT USED EXTERNALLY - ONLY INTERKAL USAGE!!!

230

PALI6LE PAL DESIGN SPECIFICATION
PART NO.: 380 XXX-01 DESCRPT.:PALCAS REV.1 FRANK ULLMANN 0B-29-86
RAM/ROM-DECODER FOR A2500 MAINBOARD REV.2 (U27) ASSY 380...

COMMODCRE BSW I} PRELTMENARY !

ARW C1 C3 PRW UDS LDS RE RGAE CLKE GND
DPBR CLKR RRW LCEN UCEN CDR CDW DAE CLKW VCC

JCDR = JRE*PRW*CI : ENABLE RAM READ
+ /RGAE*PRW*C1 ; BUFFER
+ JCDR*/LDS
+ JCDR*/UDS
JCDW = JRE*/PRY ; ENABLE RAM WRITE
+ JRGAE*/PRW s ; BUFFER
+ JCDW*CY
JUCEN = /DAE*RE*CI : GENERATE CAS
+ DAE*/RE*/UD5*C1 ; SIGNALS
+ JUCEN*CY
JLCEN = /DAE*RE*CY ; GENERATE CAS
+ DAE*/RE*/LDS*C1 - : ; SIGNALS
+ /LCEN*CY
JRRW = JRE*/PRW : /WE FOR DRAMS CPU
+ /DAE*/ARW*/C1 ; OR AGNUS ACCESS
+ /RRW*/DAE oL s
/DAE = fDBR*/CI*C3 . ' ; CHIP RAM ADDR ENABLE
+ /DAE*/CY
+ /DAE*/C3
JCLKR = /CLKE*/LDS*PRW ; CLOCK READ
JCLKW = fCLKE*/LDS*/PRW : €LOCK WRITE
DESCRIPTION

231

PAL2O0LB PAL DESIGN SPECIFICATION
PART NO.: 380715-2 DESCRPT.: PAL BUFFER CONTROL REV.2 HEINZ ULLRICH 06-18-87

PAL BUFFER CONTROL FOR A2500 (U5) FOR PRODUCTION-PCB

COMMODORE BSW

SLV1 5LV2 SLV3 SLv4 5LV5 OVR RD BAS RESET A23 A22 GND
A21 A20 D2P A19 BERR OWN D5 NCOLLIS PROC DBOE ASQ VCC

JNCOLLIS = SLVI*SLV2*SLV3*SLVA¥SLYS
+ PROC* SLV2*SLV3*SLVA*SLVS
+ PROC*SLVI* SLV3*SLVA*SLVS
+ PROCYSLVI*SLVZ* SLV4*SLV5?
+ PROC*SLVI*SLV2¥SLVE® SLVS
+ PROC*SLVI*SLV2*SLV3*SLV4
JPROC = JBAS*/A23%/A22%fA21* RESET*OVR
+ JBAS* A23%/A22% AZ1% RESET*OVR
+ /BAS* A23* A22%/A21% RESET*OVR
+ /BAS* A23* A22* A21%/A20*/A19*RESET*OVR .
+ /BAS* A23% A22* A21* A20* A1S*RESET*OVR
/02p = DWN*/SLV1*RD : DOWNSTREAM READS UPSTREAM SLAVE
+ OWN®/SLV2*RD : -n.
+ OWN*/SLV3*RD ; -n.
+ OWN*/SLV4A*RD H -
+ OWN*/SLVS*RD : -n.
+ JOMN*SLYI*SLVZ*SLV3*SLV4*SLVS*/RD ; UPSTREAM WRITES DOMNSTREAM SL
/DBOE = /BAS*/RD *BERR*OWN ; CPU READS FROM SLAVE

+ /D5*RD* /ASQ*BERR*OWN i CPU WRITES TO SLAVE
+ /BAS*/RD *BERR* /OWN*SLV1¥*SLV2*SLV3I*SLV4*3LVS; DMA READS CPU RAM
+ /DS*RD*/ASQ*BERR* /OWN*SLV1*SLV2*SLV3*SLV4*SLV5; DMA WRITES TO CPU RAM

If (RESET*NCOLLIS) /BERR = RESET

DESCRIPTION

232,

PAL16RS PAL DESIGN SPECIFICATION

PART NO.: DESCRPY.:PAL ARBITRATE A2500 REV.1 FRANK ULLMANN 05-22-86
PAL ARBITRATE FOR A2500 (U) FOR PRODUCTION-PCB
COMMODORE BSW

7M BAS RES BGIN BRS 8R4 BRI BR2 BR1 GMD
u{ SASD BGOLD BG5 BG4 BG3 BGZ BG1 BR VCC

/861 = RES*/BGIN*BGOLD*/BRYT : GENERATE BG1

+ RES*/BGIN*/BG1 ; HWOLD UNTIL /BG
78G2 = RES*/BGIN*BGOLD*/BRZ*BR1

+ RES*/BGIN*/BG2
/8G3 = RES*/BGIN*BGOLD*/BR3I*BRI*8R2

+ RES*/BGIN*/BG3

/BGL = RES*/BGIN*BGOLD*/BR4*BR1*BR2Z*BR3
+ RES*/BGIK*/BG4

/BGS = RES*/BGIN*BGOLD*/BR5*BR1*BR2*BRI*ER4
+ RES*/BGIN*/BGS

/BGOLD = /BGIN ’ ; STORE OLD STATE OF 86
/BR = RES*/BRS : BR IS REQUESY TO 68K
+ RES*/BR1
+ RES*/BR2
+ RES*/BR3
+ RES*/BR&
/BASD = BAS
DESCRIPTION

BGT IS HIGHEST PRIORITY

233

Section 7.4

List of B2000 Motherboard Jumpers

J101
321

J200

—

4300

J301
XX
J500

This jumper determines the high-order address bit for Fat
Agnus. In its normal position shown the high-order bit is
AZ23; in its other position, this bit is A19. The current Fat
Agnus chip requires the A23 signal for proper manage-
ment of the memory at $CO0000. Future Fat Agnus chips
may map things differently.

This jumper is used to set the light-pen port number. In
the normal position shown, the light pen input will be the
FIRE input of mouse/joystick port 1, as with the ASQ0.
With the jumper in the other position, the light pen input
will be the FIRE input of mousefjoystick port O, which is
the scheme used on the A1000 machire.

This jumper determines the time base used for the 50/
60Hz CIA timer chip. In the normal position, the 50/60Hz
TICK clock, based on AC line frequency, is used as a time
base. In the alternate position, the vertical sync pulse
from the video section is used. The system will not oper-
ate properly without one of these clocks.

This jumper is closed to add a second internal floppy
drive, open to leave the second floppy out of the main unit
box.

This jumper is used to enable the 512K of RAM at

$C00000. It is normally closed; opening it will disable this
extra RAM.

235

Note:

R103-

JPZ2 controls where expension ram meps to:

104, 106-108 are from EMI control

end mey not be loeded iIn ell ceses

23

28
18
18
17
16
15
14
13

11
10

M & v (o (- (o

H23 -> CO0000 (default) -> (U80600U0
Y, 7Kx8
B s
§$§§_§§§§_
RP102
_BRD7 13 C__B
_Bo<H o i
BGACKH J-BGACK A23(52
— pz2(s1
_BEERC>? ot -
CUUU-8 s
ALB46
at1704s
l_1pPL2 RL6|UY
1 IPLY A1Su3
E__IPLG ALY[42
AL341
A12l40G
_IPL (2:0) ; e 1628
| ! 28 |FC@ RY(37
Asf3s
a7(35
_FC (2:0) <X e
| Au[32
- : i
TMH z[>%= cLK e
12@—Z
VMH<:F7 g-"""
VPF] C,_,VPR gii
DTFICKD? C__I'.'JTFNL"“(g::
o - Dtt
_AS<H g 0o
- D8
R W< B op’/H g;
UES C? C_UDS gi
— D3
_LDS<H g8 01|
)
RST <>l !
HLT < S

UlZ~ =
—{\J
e
2Rloo 2 YW
2R3 Ii2733
R 2ra2
2A1 2YIY
1RY 1Yy 3
1A3 1YL
{A2 1Y 13
1A 1 LY I
1s 19he o ™) ps
B R’ ° 0
12 lens Dg
L1 30y Dy
16 603 D3
3 202 D2
9 2Dt D1

(-
f——
&)
L
lu
A.19

2ALSES 274 ?
2a3 | loy33 s
a2 2rAS 5
A1 271t 4
1AY pry2 3
1A3 1Y3ie 2
1A2 R ‘
1A1] 1r1{§ 8

7HLS2UY 9y 5373 [

)
=)
8 1617
5 15
4 12 g
3 g
2 6;1%
! il
J 201

N

S

e

el

7 N\

-
(g

C701]
. 22uF]

X 1

Vee ouT

28.63636MHz
OSCILLATOR

_XCLKENC?

XC LK

7 3‘5*709[23:1]
, L8250 (15:0)
/ — ———-—'——1‘9‘5‘0 pmp— maleteches ORD(15:0
(FLOPPY FUNCTIONS) U70x7 XL 4, /Kx9 yee | | |
.- - - - - - - — = T L ! []
"% (CONTROL FUNCTIONS) RPlOLi:%L;l HPIGI[|
31-\ : - ' - ' -
. N .. CEL . _VAD g | r-. v ® ?G_O V R
))_LATCH
Ul2+ @ - U D ovi 22 0VL
= 38}, 31 1
.ggqgggm 15 : 39'9'22 XROY <JIXROY
op3 | l2y33 14 ! 37l - | |
2A2 2YA-3 13 a 36ia0g
2A1 2Y1L 12 3 3Sia1g G 9 R T _RoMeN-EL > ROMEN
[AY 1ydS 1L L8 3‘*|ma | —
ER N S ! 33917 | . _exmanp-22 <] EXRAM
E Y2 ~_ o
IA1 1VI[E : h1ee , | _cLkRD-22 > CLKRD
_VPA
4L 5244 7415373 1 ~U13 2/ :? ;_{ng: _CLKNRD-22 > CLKWR
@) 1| : : '
s = §o i o8 il 5 s T4F QU 20— — ,
14 1 7 O 07 t 2 43 A_o1AcK 5] L AAA _
:: 2 D S I 33 rRp e -E e
g | L2 z 2z o 74F QY o
T)3 D3 it B58- g L Y I . o S oo
: sho D3 id2a 558 33 RP103— —
P! 01 TOTT IR TUFBUN_ 5o- — | —
o] | =] — ~N 11 18 .jV\rL
U10- 733 "emPTes— PRt
— (8
L Y CCKO
2R4ES 21 : ' 45> CCK
5A2 oyAS 5 JP? |
ELFR) g : | s , —3> CDAC
TERRREIF 2 ~ ~pie7~pres “p1o6 |
oilRe 1T - }
3 AL T 120 128 1205
% 7HLS2UY 9yy 5373 [—_— = =
: 80 E 3
| : By e 3> _CASU
4 125 7911 _pasep]
: : 2hs L 9370 > _RASO
: gﬁg Selag _pas1 p38 ™ RASI
AB
B 2 66 21 .
l SSlag /0371 ~Ep > _WE
o
A3
2;1g§ FAT HGNUS
N\
LS 83lbR01S
“; 8‘:05014
DRD13
2 []
/ YCC B 410R010 -
:naos RGAS
08 RGA7
I__LL . IKxYd - ' Z ;g:m AGAG
DRO6 RGARS
RPI@lé 3333339 Sl3n0s Ron
pea g S A e R e e y 181nRpy RGA3
= Lli5Ro3 RGA2
12IbR02 AGAL
:SDHDI
DARDO
L ™>SRGA (B0 1)
- 52 '
- 3.L0S ,
_ z;c__uos
. R/KW —_ —
] 244 As - mnzfR c P Wt AP 103 _E'SD_?MHZ
rL 16 pESET _LPENDIE 287 FIRE!L
- _sne D8t 22> _HSYNC
3 | X 1 ~_vsINeD?® 28> VSYNC
| veC. _csineple > CSYNC
e l | o vee ouT FB 3455012 f
| | Ciel] 28. 63636MHz FB101 -
| 22uF] OSCILLRTOR | oA [18 <IDMAL
: s |
L _InTRpL? _INT3
N = (PAL: 28.37516 MHz) | |
_XCLKENZ- 28 xcLKew
_ PROCESSOR AND OTHER USEFUL COMPONENTS
| T4F oY | 22FiP_}_G3 35 " yal D?Hnﬁ;fm .EEE Commodor‘e
| X CL KD? ’ HD\/ = ELIV\’L' XCLK TES-T ’ /- E:g:: GRA 05/08/87 |
| | J33 R 1Oy 1 / PP C/AS00 Mein Boerd
. - \ Useo on| WEXT Asst | Hock Lobstier” '
i 126 N e e 312511 [F
-) SCALE SHEET 2 OF 10

)

=
>

_ vee
o’ PR
DRO (15: 0) <2l \ P ’
\ A
N ,§/ : A
N ya ;/
N ,7_/ 8 A
N e A
‘\3 ,9_/ 18 u/‘
K e A
\5 J 12 B/ -
N e A ¢ '
\7 ,13/ 1y a/F
N yal A
'\9 ,15/ 16 IE’/'
N e
N ,M 18 Y|
- , . N an N
DRA (8: 8) 4 N _ N %23 "/
N4 TR 1Y3L6 U 3 Li N |
N_8 184 lyutie ¢ o ' 3! per;
Ne_6l1n3 | yqLy - | RP20cu, 368 o]
Ke_i7ony :%]3 ; I o RP202s7, 7168
Ne 19503 was 4 K ya RP2026s(, 568 Y
N 135m2 e A \1 ’2_5/ 26 RP20O1 u[:\/v_ﬁ358 1A
Ne—2l1R1 1y 1|85/ hi /. RPc81lsr,qs08 v
N tbmz Ferls N R RP2O1o7, 7168 oA
g . N\ yal AP20227, 7168 o
1 ¢ N s RP201s7, 3268 .4
N /7 _RP20Lef, 68 4/
' \‘ ‘;-1_/ 32 T -
_EXRAMOZ 4
.33 034
sy U35 . AP2837r, Q868 _
CRSLD? iy L2 ,35?*35 : RP203s7, 7668]
_CAsuC*® 1322 2vat < RP2033—, 458 L
_RASOC>2 152A3 2Y32 o < P 3 - =
TRAS1C>2 2|1y Lyyi8 ya RP203:, q268 _
| WEC? 175a4 Syy3 .gg?_oue -
- —+11A2 1Y3Ls
6 |1 A3w um_,” 1y |) o4! 42
L I ; e Note: JP3 sweps internel v
E—j /: o%/-o'“
- | 'f/ ‘ /: eus/_aus
| 7 /q 47 48 cH
.....CCKD‘L; _ ;s /—o EEE:S
_CLKRDC?2 *“9/*5" T 213
_CLKWRC# | e
- S 2
e
.53 054 :::
+12vV | 32:
oS5 o35 81a1
ae
-12V 12 4 e
er—Cif
~ _ROMENC>? =]
A (23:1) >4 a 7
D(15:0) <&t / _

 A500-2

L

L

L

XX256-15 XX256-15 XX256-15 XX256-15

XX256-15 XX256-15 XX256-15 XX256-15

7 g
—]
—
RP282ur, 368 o
RP202s q158 Y
RP20267, 7538
RP20147, 7368
RP20 157, qs88 o
RP20127,q:68 o/
RP202:7, 7168 oA
AP201s7, 9268
_RP20LeF, 468 o/
RP2037, QeS8
AP203s7, 7568
.. RP2033r, q468
° JP3 RP203.i,q268

L L

I i

CE LR

Note: JP3 sweps 1nternel vs. expahsion rem

31

32

33

34

35

36

37

38

39

Lo

0| iniE W

R17=
A16
R1S
RIY
R13
Rle
A1
A1G

Ub
HNB 2182

128K x 16 RAOM

ag UL asUl A rsU1l as U 1 1 as U200) reU2 1 Jas U2 [raU23
L R7 | 1 A7 A7 A7 8! A7 A7 A7 | A7
w1 I ARG AB __{ AB 13} A6 A6 |] R6 | A6
| AS | RS RS RS 18] As ° | RS | AS _| RS
| RY || AY AY AY 11} Ay | RY AY | { AY
| A3 A3 1 A3 A3 12} A3 A3 R3 | A3
L R2 A2 1 A2 A2 6! A2 | R2 A2 | A2
L R1 |_{ Al 1Al ! Al LAl | Al ! Al || A1
Ap _{ ARG AB | RO 5] Ae A _{ AB | RB
3] ke | _WE 1 _WE |4 _MWE 3] W |l _NE | _{ _WE | _WE
15/ cps |4 _cas L.l _cAs _CtAs 15| CAS _CARS L {_CRS L1 _tRS
4! Ars |l _RRS _RRAS _RAS 4/ RAS |L_{ _RARS _RRS || _RAS
01 0O DI DO 0l D9 01 0O 01 DO gl 00 DI DO 01 DO
2 [l 1 2 4 2 11 2 |1 {4 pJ iy
P W4 pA
XX256-15 XX256-15 XX256-15 XX256-15 XX256-15 XX256-15 XX256-15 XX256-15
e U2 as U2 [rs U2 aslUe l__1lasUB [reU29 | reU33 | aaU31
L A7 L | A7 | A7 L { R7 9] a7 | R? _{ A7 | R?
. AB A6 L A6 | AB 13 A6 Ll As Y | RS
AS 1 AS RS 1 AS 18] As __{ AS | RS || RS
| AY | { AY AY Ll Ay 111 ay | { AY | AY | Ay
A3 L { A3 | A3 || A3 12} A3 L { A3 __{ A3 || A3
A2 1 A2 A2 L R2 6] R2 1 R2 || A2 | A2
| AL _{ A1 At | { Al 7} Al At |4 Al | AL
| RB __{ AG RO | ¢ AB 3] AB __{ RO __{ RO | Ag
31 WE | _KE NE _HE 3} _HE HE | _KE | _HE
15} rAas || _cRs L.} _cAs _CAS 15 _cAs trs | }._crs } | _rRAs
41 _ARS |4 _BARS | ¢+ RARS _RRS U RRs [¢ RRs L 1 ARS | | _AAS
DI 0O 01 00 DI DO DI DO D1 DO 0!I 00 DI DO 01 00
2 T AL | 1 2T 2] I q2 Tt pJ
A P pal Al AL /13 Al S
ROM, RRM, RUM -- MORE ROM, RRM, RUMI
DRAWNNBY: | DATE
] G. Robbins [es/eese7 C ommo d ore
CHKD:
/'/- ENGAs GRR os/0%/87
APPA: C/A500 Main Boerd
useoon| wexT Asst | | Rock Lobster®
SIZE AEY
caseo | e C 3] 2511 |5
SCALE SHEET 3 OF g

_IPL (2: 0) <32

DRO (15: 0]

RGA (8: 1)

Note: LED off, Filters bypessed

HU

D10

DMAL<F

CCK>=22

CCKAC>2

_RST[>=

/ gu7uf |1
= R338 | R331
F]UDINQDQ ' lcﬁ(\/a ¢ L AVa }
| EM1305 Uld
RIGHT>> HEn—- g\
| | {LF347 1
| - - /TLOBY 8 10°
woo F/ . |

- RS

EMI306

470K

C321
RN

LOY7uF |

R321

i\
Jit -

EMI

LEFTS>—t

+AV

P

RSGZ.?K 1

+AvV

13

Vref

. /TLO8BY TR lé'
auDLO F+ --

LF347

lE§§\\ R306 - -
| ' 90
_LEDCAEA—4 3 ! /\/L : 2N3 :
T _. _/ LaK _ | "
U38 @381 s | | 470K
R308 C308
_IGK _|.01uF
TAY L
AUD10
PL2 ~(NTep-12 G_I NTG'
e UJ wsp 2 INT3
IPLO , T ——
_inT2p-i2 83 INT2
PAULA - ve C
Tt Aopt S<_RxD 47K ue
| - | .
:‘;cnms 8364 _1xopi8 SD__TXD RPSQ] US : —
it ' T < L 2|
470Ro18 . |
48loRo9 _KBRESET> S5__xBRESET Y ’—"U:?
20:33 | | | | MTRON|YE s|
D : W
3
:gggg vCC _MTR L O MTR G 9 R T
DRDY) >
33233 R305 _SELOA 16 o seL .
EINEOT 1K - | o __U_;;
10 - |
o —oxRop-2 <7 DKRO DKWOB[HS L i
_praop-38 9 | oKwo o ——
K - '- | TEE
BKRE 39 _ 8 DKWE DKKWES gy - 13‘
| (FLOPPY |
| _ FUNCTIONS) _
o= S<TIPQTOX
Pev: SIPOTOY
pix}32 2IPOT 1 X
e S<IPOTLY
c311] ¢318 c313 cad -
L2loMAL -
30 _| . BN7uF_| .BUZuF_| . B4 7uF_| . BUT7uF
28] RIGHT —>>RIGHT |
29 LerT! =>>| EFT
lccke _ L
RUCIO
1l RESET A_Gndf34
FB802 |G wen
AUDiIO _
Note: Gound connection et Audio Jecks

A500-3

S Ced - RIGHT

™m
=<
[—
(&)
o
wn
-
’__l
H—
L |

6860pF S - T

HT > — g 4-—-—-9—\ R332 J1U | 22w CL335 CN3
k- - o w/.;eggq 8 15,(: | ; R33u EMI3G3 [acm sack |
: . —_— | { 2 - 1 12 .
Ek | | | AUDTO o la/ | 1K WV | Enl | ED I
. _ . ! { 3 - 211.."_" wd
E | Veref | | - 22uF 390 |
- ' | - - B33 R335 _ =
[o i

| ll?EllK g — AUOIG
? AUD1O :
S | R _ N s> AUDOUT

| L i 2 l | | : ' - h ' |

F- o - 750
| - | €322 I._ _ F T
2 EMI306 | Jit —

1

FT12> EMI} 3 | R322 -| PO00Rr = | 11U .22ufF (325 - CNU
- S IUETS A LN Ay HewiHE—

12 . | ’ | /TLOBY \
: P2 , 2 +| {I | Ziouns 3
. — | \ 2 - —

i
Vref L’E S C324 22uF 3903

8321 | MPFl02 —L—E_323 B | - R3e5 _ =
3900pF |_ o
R326 - o S
2 e _) . -
. uolo _ | | : _
“AY — +12V
RUCIO i
R301
10 +RY
| c3ei] €393+
| Z T A P
F vCC uty
| yce =+ 1 r3p3 C304 4| L
U, /K4 ,_ | - _ P D10
| | | 1 4L 538 S | T.22uF 'fl-:ezuf-' ,
RPSO1 35 US e _uss| =2 > MTRX o | |
T B 741538 | | “‘ N -
5] . S _KBRESET 4 | R | -AvV
| MTRON[E 5| V38 P T>_MTRO P 19 | | |
—(MTR N ' , : D _ B o
. GARY T o
B 16 A seL | - R ‘
- - 2 741538 S . D a » - l
| U3G : 1> DKWDB | - |
3 o OKNOBH2 18 - | o | | o o - -
9 .J_OKWD 12 74L538 L _ o - :
: N u3e| pu ™ DKWEB | | o |
_Blokue oKWEB [= | > |
(FLOPPY |
| _ FUNCTIONS) _
~C3 -,c307 <P303
E— IK_ | ' " Vref
' 2POTOX . B | | S - | - - "]v
. - o | . | © | -22uF 22ufF N -
— . < JPOTQAY - | : - | €305 +
| | : S . | R304 =l ~— 306
_ <JpoTI1X S - L | B TL-E S = 10uF
— >JPOT1Y | | - - o o | —
318 c313 el | SRRIE : | | S L
«7uf | BU7GF|.BU7uF | .B470F R o : o N | o | | BN T
1
| AU 10 , S - BT o f PAULA DOES THINGS THAT OENISE DOESN'T
| S | - T | S | T R hemmins] COmmodore
: ' : ' - / E:;:: GAR ss/en/07
_ | | : APPA: C/AS00 Main Board
ound connection et Audio jecks | | - - ~ | T REYT ST su?ock Lobster _
i , o _ - , , N C/RS80 { 312518 C 3 1 25]_ 1 S
' SCALE SHEET 4 OF g

RF
74LS157
' 3,7 1 R4~
_CCKC2 T e <18
- | 120 RPUOY — — U1
. . 4 .
RUOY T VVTz 17 ch
~ 7
SRAST 2Y 2B}
- 7T}\A’i° : 37 -
. N 12 -
TV Ly -
b8 15 Uhy:
—d0G)
U::_
Ul—l HGV38 '
L 0AD1S | MH .
DRD1Y
:gnnoxs
DRD12
::nnoll MiviES
0RO1G
&snamg L
DADSB
wslono; RPUGS
UnRos
gonos ,
DRDY
410RD3
SloRo2
SloA01
bRoo -
"DRD (15: Q) DENISE —
i?ncna - -
RGR?Y
igﬁoas r1 j, 1
jugggi 7LJ:HCT2L1:S {
15 23 2 18 3 :_
162222 2222 3 2? S? 17 u:g F
1 LRGA1 A1t L lq2 B2HE sl;y VIDED AC—
| Aol S1A3 332 e HYBRID e
RGR (8: 1)L ULJ:O |
31 6 14 8
G3 AY BuU G3
e[22 LiAs 3512 Sz |
61 A6 T W oBpHe G1
ce” 9 A7 5 IB7 11 llGEJ
CCK>2— 381ccx - 2
JUHCT2US
g3’ 2 A0 BO 19 13153
35 2h 9 17 14
| IMHz>2 [gfzs 4 Eé gé 16 ’ng
_CDQCDE 3u_CDRC Bqu 5 A3 83 15 1880
3211 ANK gursTp-18
5 1oy By L™ (CCKB
PLXELSHD-33 185 B5H2 —
® lAg = W geHLe .
a7 T B7H 181csne STNC{’
COMF =
+VID —— '
_CSYNC>* | -
ycc
uo——!
Z1EMIY06 +VID yee
ae RUOG ~ AYOS
- 1\/\2 1\/\2
s U.7 |3300uF «~ ~ o U.7
S - A ! L ~3300uF
1 Tloour | 1 Tleurer[T Louzor(¥ ? +
gul == == udel == ourl == THY1 o ==
s | Tcy cuei - s | _Jcyo 3 Cut |3 1| cues-
= S eI “l v
) JV ’ ¢ . .

note: EMIUB] is looded with !'.7 Ohm Resistor

CETEETEEER R R

©« LEFT JoY &

: | S - o T | o | -1 EMIual
; | - . |] CN1 =
. : | - » ~ DBY9P | | | - | -
E RP‘%GIé _gg__ _?g_?] EMIULL = o . " |
; | |) | EMIY12 ;",.11_1..& P o T L eEale 6 FIREQ
[| | N | o | | S EMIY13, ;}; > 3 " | o _
F - . - o | EMIU1Y, ::4-1- 2 U b
7LLLS].57) 9. 1 L‘MI_E_ELHIQIQ ‘}‘/\—JPOTGT
A2 T
I — _ _ 1 SU 1 518 5 | _ ‘ 1 EP'II 2EMIY1Y u/\:“:)OTGX
120 _ | | | | .
< | HPLLE]LLII - i Y 2AL2 | ;_{GGpF 100pF} 100pF |
i | SRAGE ! oy 288 | R o “Jcuis Joure Jeuit
= A3 23y 3R |
A 12| ¢ 3gle 1 - BIGHT JOY
t CVVIR - __
768 |y | - CNZ
-a0G | |
4B | DB3SP
t -- | o EMIY2Y i - - -
) - o : | - EMIL22, i P G — . LEMT 2EHI.lll25 M:}_F IRE].
i | |) EMIU23, b , P - e
EML | * 8 | |
EMIY424, E;{ 2 S |
r % L EMTIEMIUCE QGPOT 1Y
‘ _, 5 | |
L‘. LM 2EMIUZY LACPOT].X
) ~| 100pF| 100pF| 100pF
“Jcu2s Jcue2 Jcuolt
0B235S |
- | XCLK
H \r 1 : XCLKGZ . - | * 13\ OGND
_XCLKEN ¢
 XCLKEN<R - ‘zm’ PIXLSH -
" N S o T e T EMINO2; . 2
12 - £l vran - oL
" I VIDEQ ep2 _ S eemse L T B 2] CCKB
: | - e HYBRID s | L pieEMIu3s Bl s |
| - RPUB? - — 01 617. GNO
| | !TJ\nViE * 18, {GND
18 853 | , - AAA 08 '7
13 o> ‘ , - R IC) o - 19, |GND |
2 10 , , X . 8 -
%. ng; ‘ N ; ST VVTS " * 26, |GND - NCC -2V
. o , N | 3
L S . _ : | | 7 ' RPL'.1037]_/V\’_]B 21. |-Sv VT 1 EMIYO3 ’-T/
| N | - Z;v§:|4'7 1 EHI_ﬂgHIQQQCSYNC o8
-CT2U5 L | ‘ 7 C 22 |+12 s L EMIUGY
L i3 | | <>R.8 . ! HsINC | 11 ° — \lﬁ
-;z, «.qgg | ___HSTNC 3T/\/\f14 * 23._ +5 v LEHIL}@S oy
: . VSTNC EM! —
= T . _VSYNCR W5 YSTN \12/ J |
| ‘ | - - zi_’\/\"aw =
s LS™> CCKB : | o | - . I ST
Lyll ‘ lacsmc o STNC <@ ' o : | | ' C N]. E]
i comp LS _ _ - _ ‘ LN 2EMIU3S , ;jifgi) I
o | | - TR - 150 fmee]
I | | | — -~ R4Y09 | | |
| - COMPOSITE
P' | — - - ' - | o - RYUO9 Controls Outputl Level

DENISE IS PRETTY MUCH INTO VIDEO...

DRAWNBTY ¢ DRTE
G. Robbine [es/euse? C omMmMoO d ore

/ CHKD,
ENGAs GRA 5/00/87
(/ Pen; C/A500 Mein Boerd

TsioonT wext assy | "RBock Lobster®
| v | sase [E[312511 |5
SCALE SHEET S OF g

i
L
.

Lot
kgl

. Wi
D (15:0) &4 < _KBCLOCK
| cjue -~ _KBDATA ~LEDL
; T SR
s g U7 L
4 39 | ol
A(23:1) AL N : b + - —
| o o | : 3306
PA7 35 FIREL
_ sshsy 0OC U " <J_FIREG _MTRBC
370nas PAS <1 _RDY
. - —38iasg PAY e — <3 TRKO
| PA3L <] WPROT
PRz L] CHNG
, NZ_—LC7QLS32 | PALE q‘ﬁD_LED].OKXS V“CC |
U3z 3 23 {_CS Pﬂ@a 2{:>OVL HPSE]],
-, B | CP47
) 1 o 2EMIS11 s
10K x9 Y‘CC 22_~ pe7 L7 N /e) .‘E.:;_L 2EMIS512 _
| pegHE 1 1 EHI*—EEHISIS -
RP501 2Sle \ VvV !
. - I pesHS 2 L IEMT 2EMISIY _
N . T EMIS1S
1 NT 2 <! 2l o Nt pey A \ /3 ! E’?—I 2 _
| 13 [1 (a1 2EMIS 6 .
| - A r - EMIS17
pe2f2 S L EWTR _
_VSTYNC>2 ek o [11 N /e ! :Ezemsm _
M o pesET pag|L0 :: | ::7 1lé§1 2EMIS19 B
PPD (7:0) | —
N ‘ |
| - 10Kx9 vee |
[|
RPS01
h Il;_|
il vy 2EMI%21
il vy 2EMIS2Z
; ;E: JEMIS23
) EET:EHISEQ _
| 3\1 R501 =
REE | 2N3306U 2 g
luo o i - | 1Ng1Y
e UK x9S ¥cc 1 . 10K ZS
D7 - —
e 18 RP501 I S B
ggg; _,,CD_IG — _ - =
2;135 Fp-2 <] INDEX vee
3300 ‘3-:-
PR7[=
sl.,, 002U P o
i; gg RS2 PRS | __TXDC>Ll : —
3 38:22& Pay [
) Pnais _HXD = —
10Kx9 xcc | | | \
- I | pazit S
RPS0O1 741532 paLl3 ‘
: u,l s ud _
YMAES2] - | u37 s 23 Ars PRO}S
R_W[>2~L 2. H Pa7(Ht > MTR
| PBSIS > SEL3
1 4 —
e i ros(is I SEL2 ﬂ
_INTE<3 2l PBufL > SEL1
o PB3[> SELQ -
| | o212 > SIDE
HSYNC[>25 Sric ¥ I~
— | | P8I [>DIR -
_RESETH ——3 0 Reser peof ™ STEP

A500-5

- Note: EMIS0I1-503 are loeded with U7 Ohm 1/2 W resis!

:
E 3 ycc
S_HKBLLOCK - - | ~ R50S)w KETBOHRD CONNECTOR
L _KBDATA S - _LEDCHE— = 2N3306 | | | |
§ | 8-PIN SIL
| - _KBDATA RIALy
: o T | _KBCLOCK<& LR &
S - o _KBRESET<} —fESEL vee
FIREL RSO6 KEY
FIRED MTROC* ‘ eN3306 i
. | §. 7K GROUND} &
ROY STRTUS| 2 L
TRKO INUSEL | =
WPROT | S - | | - o
_CHNG) | | ! S FE T R |
LEp 10Kx9 S . _ N ~CNI3
CVL e | - E |
o POl e CN7 opass
— | | i 1 Eyl2EMIS _STROBE /7) EH[SE]I GE
f g 1 EHIAEMISle e 2 e i L %3
¢ liy_zemsw o1 2 Ll cHi520
s =P o] o MR 2] [ORESET
? P sEmIS 1S ol s - --
T | 18,
& 1 =1 2EMIS 16 0y
V E,?I 4'619. 1 : CENTRONICS - | | _
) [EMT 2EMIS17? Bs| 7 | :
r/§ e * 29 - . o
L =T . | | RS232 DECOUPLING
/ﬁ A - = o S C
? 1) 2EMIS19 D7) 3 o | | |
= 2 ! | - S
-] _ACK .192k
| | 23 '~
/ | B Busy | 1t © LEL
. 1OKx9 e ® oy o
- - POUT| a2 -
- Tl - * 2 . L o | o~
RPS@I 1S seL| g3 ° | - - - | .. U3!9 _1C33 +12V
] - o ' 5 S I 30| [LoF G
_ | 1 EuT2EMIY2! . | — o o B _' A ~ 11U38 |
B | Er2EM1522 o | | | o 1
i GEMIS23 | | - |) - “12v
F- — | - - |
_ 1 Er2EMIS2Y |
r o oser -
| 10K
| - 2N3 \l ' 2 i
o izl RS02
2 TJINSIY |
Q vcce -
- | = HS_E]I | | - o
0113 - | il tgan o - | o
— <3__IN_DEX __ vee S %8232 CNB
- - | | - . =\ e | DB25SP
—_ 12 _ ' ' S -
_ - | | 8 38 - - ‘(TR0
| ' " 8 1 [EM] 2EMIS32 Tx0f &
— TXDDLL 9‘ V | - ol s 15 |T=€
- : _ - U39 S EM1534 : ¢ L§ |sRxD
L | _HXDG 13489 1 1 E:?I a. RTS| U 7 e
b |, luss | N (TS} & | .22uF
3 - o 5 \Us38 | [2EMI533 osA| g e i I 1 T >AUDIN
E‘ - R _ _ — S < 13, |sATs - CSE]I
R [S | S ® 2 fotA i pprreEMIS3p
3 | . o o | S w12V L = '
| | f | | | ot EM1502 2 K i .
22 '
o | | - L#Z%—ﬁ,smsas o ge o EIF
TR - | - o A | T Al .22uF|
| | 12 oC o CSBZ
EL2 | U31190<1413 1 (] 2EMI537 ’ '1225. BZ N |
' | U3g e | | -
EFLO | — | _ 6 - L EMT zEMIS3S |
. . - o - 1489 ' | |
10E | | U39 & | - RS232. CENTRONICS AND KEYBOARD
R - _ . < 10 L [} 2EM1S38 - P e posatne fwms] COmmodore
. : o ‘ : 1489 | cmm: T |
f.TEP | - - | | S T o - ; AR C/AS80 Main Boord
3 | | .' F. | . o | B ‘ | - USED ON| NEXT ASSY 3;?00k Lobster” -
. | o - | cossa | mzsie 00| 312511 |5
3 are loaded with 47 Ohm 1/2 W resistors - . : ~ | SCALE SHEET 6 OF G

2EMIB1I
_RDTC,ISY 1 ERT2 LADY

| o _ : . | %A&E EMIB172 t | 6.7
, _ -] : - o | 14, | _spRoT EMI6E182 1 6.7E> WPROT
R | - ¥ s | _ome EM1519 T | 6 TRKG
y - | —
5 —
f * g EMIB212 1 4, 7. DKWDB
r~— . .ﬁ =
| 18,_| srer EMIB222 L 6. 7<-_] S TEP
| 7 —
. & .
o : _ , 19 | oA EMIB23? L 6.7 :
A | | MTR XL L ENTJRENIIS el 8 EMI624 QGGDIR
: , — 26 2 :
SEL2® LEEREMIE el o T l —tL3
—_ 21, | _seu EMIG2S2 ! ﬁ_._'LG SEL 1
- [ORESE T8+ EWT} SIS _annl e -
: : -) . EMIE L6 22, 1 _INDEX EMIG262 MTH ' 5. D INDEX
| | - | .._CHNGCP‘I HEMIE MH“za i o . B | | |
, o | | RE: +12V

_ _ | ' | \ | . ' EMIGGB2] oy

' - | | o = - vee

Cons s (NTERNAL FLOPEY
XTERNAL FLOPPY ‘ CN11 %

) CHNG

CHNG < L = Py | g—
| - o o - | ,. - - - : _MTRON
— o | f - ‘ | | -) oy 30

.’ o | | - - - | I _INUSE
; | N N | o | | | 06 so—1——

L S INDEX<Fl— _INDEX[

f : o . . _SELOD= i
—_— | o o o - - - | SEL 1 > = ©12 1lo
| B o o - - - | o = | - _SELZ |

olYy 130—p—¢

| T

_MTRON

_MTROC>E o156 15—}

D[R[>EL _ 1R 018 170——
— _STEP>S S TEP 020 190-
é | _DKWDB>*! ‘ —:jg 022 210

AT DKWE B[4 = o2y 23—
, —_TRKGCP-7 TR0 026 250-
-“-;- - _WPROT <P _WPROT —028 270
3 _DKRD<2 A0] o3 200

| _SIDEC>E! _SIDE 032 310—

_RDY <R : _.RDT o3 330~

L Pk .' de o o JP1

> 2 8 e

— B o B | ’ oot B> KBRESET
| S | | | B TRIG | 1K | -
5 | - | i ouT3 1\/Aﬁr-—3{:;53904 S

_BSTS 5 5 | - . l

6l ruresn | vef2
I 7 '

~ - DISCH
C711 C712

T T i SeEotl HCTITUON
— T i 8 N : : - -) :
|+ 1uF o "1 OuUF . C713_ cy?e o | - - | | '

|

[22uF

Nan

S 1 | | _ o | - - , JuLs32
- | - - - - | . - o | | . | N 8

| | | | . o IR - S | | | | RS T [o2ual - Iz,ﬂ'/'-LLS32 “ - - U3

Essj | . : | - | o : - | | . | o | | S .‘ | o 'jc 11 —

B P 1
E.
DT o+ —— 50
B - *3—4®
% o B _ .~ to
DB S - - . o - - | | " | 07 80—
P | | | | o3 100 |
‘ | | 011 120 _CONFIG 43y |
s o N Bl LeKG
SR T I CORC<R t—o1s 1se 2.3.57 (CCK
E X I o _OVRC2 o7 100 _ >XRDY
3 | | _INT2AE 019 260
I% | | | - r : —021 220 Li> INTG
) : 623 200 | o
INTERNAL FLOPPY T on e | T
: | - ' | : 027 200
o | SRR : 023 300
i- CNIT - o
t o | - - | | /' . (/“ 033 3N
| CHNG / | // _o35 38
— = 02 o o - | ‘ 2 \, _IPL (2:0)
_MTRON[. f e~z S VT o . e
[| _fre:o< v . .
_INUSE[. . T e L/
_INDEX o8 ; »/N oYl uy2o
) _SELO oo o /‘5 ou3 yyo
SEL1 12 Us 460~ e<>_ BEER
| = e12 1l
F - _SELZ /" oy7 use . 27 VPA
e o o1y 13 / - |
[[MTRON] . . | | | | . t 043 560 _ —2.8E
Fi UIR ®18 170 | | | - -—-VMQQLB | /[19 051 s . |
_STEP . | e RS T <> //20 053 5o
° 190 | Z so0
_WD - . _HLT<* VAT ©55 56
r _ 022 22i0—pt— o - R 22 Jp. sse _
— __NE o2y 230
TRKO 23 059 600 ZD__BR |
= 026 250 | ,.
WPROT | : | / o681 620 ﬁ -—= > BGACK
— = 28 270~ |
- _RD o A(23: 1) < Reb = —©63 U0 <] _BG
- — 030 290 — " | |
SIDE .' . | /" 055 660 <> DTACK
— = 032 3o B o |) | . | / -
1 ROY ' . . : ' L /13 —©657 68O 2. SOR—_N ,
— o34 33 : | | A S 2
; I ~ | o | / 063 700 2> DS
- IR s 1 . ©71 720 _ . 2> UDS
f o | ./l€| 973 4o 2> AS
: 075 700 - |
; 077 700
- : 079 8d®
: 081 8do
| o ‘5' 083 sio
;_KBRESET | - - ' 085 .a}o
D(15:0) <&
p 74L532
0 ‘ S.I> J0ORESET
'Da.ll 1 . 12 Z4Ls3e = U 3 7 . ' ‘ | | - -
| - N . : > RESET | | | | FLOFPY DISK AND EXXPASION CONNECTORS
. . —C _ : _ | g G.th.l,ﬂ::n. .,DEI:E Commodore

//‘ CHKD:
; ENGR1 GAR |es/ea/e7
{RPPR: C/AS00 Maein Boerd

L,]
GSEoonT nexT Asst | Bock Lobster

C/Asa8 312510 SE:ZE 3 1 251 1 név

SCALE SHEET 7 OF §

5,

. %
| S . . :

LINE FILTER

C N 8 | oy +12V
o M
/ y []
6 | +
% %ﬁ] 4 | | - _12y
*12“%$ND |3. BI Y /uf |
SH - +5 ' ,‘
\r.a ¢ o vee
s
cPln SO == _ + C8127|+ C8137|+ C8147|+ CBIS |+
“PIn -+ 1* i _L* Lt
- | | F 1 ~100uF f{:tnuF TuTer Jurer s
“ -
NOTE: HEAVY LINES INDICATE
~ SINGLE POINT CONNECTIC
ycc
EMI181 - EMINO7 |
ety T et - c2 Clcs ~ "less
~[.22uF LiUI- “T.22uF |3 ve|] 22uF] 22uF 33 M
VCC
& o k w 2[- ~ “ic12) :)
; c7 ; c8 ; C1 ; ;
U’ ugi{ —— Ul0|] — — ULl3] — UlSl —
j |- 1uf “I' |- TuF mi‘ _|- 1. 1uF _ o‘ _
vee
T s [o Tes [M e i)] e [T
UlG J.22uF UP]2 “J.22uF Ulg] . 22uF 2 . 22uF U§2 ~J.22uF Ug ~J.22uF qu "
) 1] " !
T CUUPr|
. m] '”T - > 4 .
] Cese 0 R =TI e es "les ' |
Udel — g[T U%’F — T [TiF

A500-7

TR

| OP

VC

) T |

: y-PIN SIL
+12V lo
- A S
; +12V |3y |
L oeNie
YCC
}
- CB8127|+ CB8137|+ CBiU |+ CBIS |+
: 80uF :Fuurf TuTeF WJurer WJuTF |
OFHRES
ycc
7UFQOY
1| :)O s
| U33
_ TUFOY
: EMI1407 | __QDO_B
b E U33
s 7 ess
T 220F U§3 T 1uf
:
Cleiz i1 cis3 i] cis
TiuF U%B TioF U"lf TTIuF
'A
3
. o .- ’ : > q
aO o [+ o] o © o m o - »] o m o Q] o D [+ l Ol o
c21 Ué=2 Co2 Ué3 c23 2 C2y UéS C25 i C26 57 C27 é c28 Ué £29 Ué@ €30 Uél C31
_ - - u2ui —— N :::: - —_— — —_— _—
22uF | 3 J.22uF |7 % T. 22uF ‘ﬁ{ T 22uF |73 T.22ufF U§6 . 22uF U% T.22uF Ug T 22uF | 3 22uF |3 T 220F |~ 3 T.22uF
[T+ . (7] [£4] [7+]
7 il T 7 : i i 1 1

P L

POWER DISTRIBUTION AND DECQUPLING

e

DARNNBY: DATE

6. flobbins {es/evse? C ommno d O e
CHKD: -
ENGRs GRR __|9s/ea/e7
APPA: C/AS5680 Mein Board
useo on] wExT Asst | Hock Lobster”
consea | masie | 33 1 22 ES 1 1 "

SCALE

SHEET 8 OF G

e

CNT #sx
. , XDRD (15:0)
L 2 9 - / —— \
o o
4
05—/05 ,/
/]
.7__/ of 3/'
Va
'}
o o /]
| A p——
R 1
7
/ XX256-15 XX256-15 XX256-15 XX256-15 XX256-15 XX256-15 Xr
8 | rs UY asUJ 3 _[asUSA [re USTL_1[rs US2 [e A8 -
1 ot A A7 A? A7 ByY 8! a7 BYY, By
| s A6 A6 __{ A6 | A6 13} n6 __{ A6 _} RE
A AS AS | RS |1 as 18} As |1 AS || RS
18 AY Ay | AY L { AY 11 Ay 4 AY ¢ A4
1 ol8 / A3 A3 4 A3 L { A3 12/ A3 | A3 L | A3
u - A2 A2 | A2 | A2 8] A2 A2 - | A2
A A1 Al |1 RlL _{ Al 7} Al | Al |4 Al
._/ 12 Ae) AB | | ne 5 A AB | ne
1 ol8 A
13 3] WE HE NE |4 _kE 31 _JE T 0
4 15} _cAs _CcRs L1 _cAs |} ._cAs 15! _cAs _CAS | § _Co
./ 1 4] Ars |l _mRs 1 _mAs nas Ul _pRs _RAS bd ¢
1 028 / o1 ool |o1 ool |otr ool |ot o! oo |or ool {C:
1S) ,___]114 1
L o2! 22
| RPS01:1 258 %
.2_3/‘24 RP9013I_N_N[652 Y|
RPS01 5[AALS 2/ XX256-15 XX256-15 XX256-15 XX256-15 XX256-15 XX256-15 XX2§
RP901 58 ag UD asUS L {reUSE e UST _1[asUBD_Jae UG I { ns .
2 028 7[-\/\/18 3/ R7 _{ R7 R7 __{ A7 1El3 A7 | A7 4 R7
, L | ARG A6 ARG AG A6 || A6 YT
| HPQOIS[" 11E68 /] | RS 1 AS RS :ns 10] s RS | RS
| AY L { AY AY _{ AY 11] Ay AY L4 RS
.2_'/928 RP9@21[— 268 5] } A3 A3 | A3 | A3 12} A3 A3 ¢ A3
- — | R2 A2 __{ A2] A2 6] p2 A2 1 A2
- RP9023F_‘/VCL‘468 s/ At Al | At | | A1 71 AL Al | Al
5
.23/.30 RP9025r‘ 68 ’/ | AQ |l A0 1 Re 1 ne fae Ao | { RS
- — l 3] _uE _HE 1 _NE _MNE 3] _WE _MWE _ME
HPSGE?{‘st 68 s/ 1S} _CAS _CAS Teas] chs 1S} _cRsS : _CRS : _
._J/ " T | | 4 .ﬁFlS - _nﬂs _ﬂns - _nns 4] _ARS _RAS |] _am
3 032 Dl D! DI 01l ot 0o {o! 0O LO:
.,_J‘ .__l‘ .__I‘ .,__JI L le__§
i ‘33 .34 5 /ﬁ /b {m /u /lz /1 3 .
| RPS03;, N1268 _ - » -
.35/ 035 HP9033F‘ 68
o7 o8 RP903s ‘anBB
RP9037[— g 08
o o
. ®
‘——5/ A
Yy ¢u2 1V
y ot 3 o - |
2
e < \ XD (15:))
3
®
' N
L]
e)
4 .@ S
\ XA (23: 1) _
M 058 - T ' — — — - — me—— _
| _XCLKRD
o3l _XCLKWR B
L +53 .54 :gr—x’
+12X I — T Tﬂ
[+ 4] _ a o [+ 2] ©
T > o° ; cug : cug : csé : csi[_ ; €S2
- uys - uysg — Uso S Usli T use N
:55 5 . 22uk m . 22uk ‘.Pj . 22uk ff . 22ufF ff c22ukF
!i' ..:-:...
-| ,C9@2 - +C9@3 Exp
— — +5X
’; - Y 7uF ':_-\- U7uF
|] éJ © © I o T mr |
i CS i cs? ; cs8 i cs9 i C6
-l usSé6 - us? uss - Uss R UBo
exr H . 22uf f . 22uF f . 22uF f . 22uF f .22;{
o @ 2 | o) o) _

XX256-15 XX256-15 XX256-15 XX256-15 XX256-15 XX256-15 XX255-15 XX256-15

(as UU8 [s UTT [as USO [asUSTL 1] asUS3 _[asUS3 [ae USY [s UST
Y __9} A7 A7 A7 | A7 8 A7 A7 | A7 || a7
13} R6 || A6 A6 || A6 13} A R6 __{ A6 | A6
\$__10] g5 | 1 ns AS | { RS 18] A5 RS |) AS | RS
31l a4 || Ay AU || Ay 11 Ay AY | J Ay | Ay
\Y__ 12} n3 1 A3 A3 1 A3 |12} A3 A3 wEE | R3
d___6/R2 A2 R2 | A2 8 R2 A2 - A2 || A2
2___ 7 A || At Al | A1 4 At __{ Rl __{ Al | A1
:;_i. AG 3§ RO RO || ne 3! RO AB |_{ AP | A0
3] WE |4 NE HNE) E 3] _wE T S BT B RT3
15} _cAs _CRS _CRS L ! _CRS 15! _cas |3 _cAs |4 _cRs | _csas
4! pAs _RAS _RAS L _ARS 4} _RAS _Ars L1 _mrs | _mms
l‘ 0l DO 0ol 00 01 OO0 0l 00 0l 0O DI OO0 0I DO D1 0OC
% G2 L S A [| 1 L L 2| i iy
:{ .
O L L A
+12X
XX256-15 XX256-15 XX256-15 XX256-15 XX256-15 XX256-15 XX256-15 XX256-15 | o - +5X o | | +5X o R9A11
(s USH s US 7 _[aeUSE {asU 1 asUBQ | re UG 1L | ra UG | re UB3 S~ | 470
L A7 | R7 R7 _{ A7 9} A7 A7 _{ A7 | A7 | - +5¥
m | _ D911
| ARG A6 RE 1| A6 13| A6 __{ AB __{ A6 | A6 | | ‘
RS [] rs AS B 10} Rs As BT i As | 3 11/03 ' R312 | 4
YR - ae [lay 11} py v ey []eu - 2 12]02 Ug 1 9K TP3 |
| A3 | A3 A3 _{ A3 12] a3 | A3] A3 | A3 | 1 13|01 | - &|pgi2 IN91Y
| A2 A2 A2 {2 6} A2 A2 _{ A2 || R2 8 14j08 stp. PH L o |
Al BEY B] a1 71 At Al] a1 BET | | ' SZ
| RO __{ RO RO | A8 3} A0 RO | RE | AB | | MSMB2U2B A . TN 1Y
3] E _MWE _MWE || _WE 3} _WE _MWE | { _KE | _KE S 1IR3
15} cAs |.{ _CAS _CRS L4 CAS 15} _CRS CRS |4 _CRS | | _CRS - 4 6jRe ‘ | - N
% mpRs | | _ARS _RRAS | ! _ARS 4] _ARS ARs |1 _ARs || _ARS 3 SiAl -
; 01 DO Bl DO 01 DO 01 DO DI DO DI DO DI DO Dl DO ylno | | - RS13
g T z I P | 2 1 R | 21 PR § 7T [: __ - , L70
i’ | | | o - . | | veep® -
18 1 2 s iy 1s | . - 3|ALE . | | | 1 2+B T]_
'dro 13, cow] = e
- _ — 4.5V
| 2 wA | “JE.I0F L 1uF 1 BOmAN
' ' S - - o | | Bles1 | —
2gcse GND [1
; | ™ = |
. | - | _ | o | . | _:"::— Ye - " EXP
| | . : ” . Ex 32768Hz
; _ . .) _ - . 47
5 ' ’ .) - - : . 2 1 { "
o | | . | I J 5C912
E o 5 o | o cotf : =
. | - | o m— i
E _|20pF | Yo
g: - 1
* - e
- EXP Exp
- /
— 4
[,,,
— = . pos ?- | p Y p NI p J — = ‘l . . _ -
: C50 $ C51 3 C52 2 CS3 3 CSy 3 - €55 . K o |
Uso I Usli T usSe U553 — usy —— Uss - o |
f . 22uF f . 22uF f .22uF~l f .22uF I . 22uF ll . 22uF
e = S l © © l © | L ©
MEMORY EXPANSION AND RERL TIME CLOCK
— | | e ! | T f DRARNBY: | DATE
m. NI m. o m' Nr - ~[m. o m. eul - G. ﬂobb!’nl 0’%/0N/07 C ommo dOf" e
£ 58 3 C59 $ C60 : C61 2 Ce? $ C63 CAKOD:
—_— —_— —— —em — ‘ ENGRs GRR 03/08/87
US--8 T US—-9 T US--[J -1 UB-1 -1 U6--2 -1 U5_3 i : RPPA: C/AS00 Main Boerd
~ ' ’ ' , ® ' | | c/rsee | 312510 s&ze 3 1 25 1 1 ngv
| - - ' | SCALE SHEET 9 OF 9

RN/S

- 8x/0K

- TRN20

Ox 10K

KN25
Ox 10K

TMP
HLT

RNIS
Ox/0k

t5Y

4 A9
' 6,420 T\ 420 481,
TVA2/ A2/ 50 |42
. 8! 422 A2z 511,
|
' :?$AZ3 A23 52 73
______ | |
> /5 CLK
E > AL
7z > /81 RE3
'Y,
[/ — I PO5 RIS S#ps
' 81P0/¢ P/ 55 Y
! 6 ‘fm/z PDI2 5710/
l 5,PD/1 PDOII 58 2/
| Y\ ppro PDIO 59 00
¥
3 P09 PDI 60199
| 21208 N/ P08 6/ |p
Y T — o
Q ————— -
1/ 9 . .PD7 PD7 62 07
1 ', 8,~ \W/ PO6 63 D6
W17 PD5 64|ps
| 6, PDy |/ PD%
| 5\ P03 PD3
| 41 PD2 PD2
3, Pp/ FD/
| 2\ PDO PO
-

68000

Al o
$v'¢

+5v

POIS 29|
/ POy 27]
Fol3 25
Fo/2 23
Y7 20
77T
YZ /6]
ﬂp& 14
/ N 2
NS, m— O
S 36
< 37
N 38
O 39
- #40
2
F
J
L i
5
| =
é
S
7
| | 8
| 9
s E
7y |1¢
ROME

~ A2000-1

REVISIONS

DESCRIPTION

LTR{ZONE

{:DATE { APPROVED

Al- 28

crv

173

Q

<
- C
~N
o

WO |~ |4+ |-

o e ——
-
h'\.

R |
l;TFWTfT

O
X

|
I '

)

L

M

7] 3
4 - —{ o _>CLAkWR
5 o /6 CDR T
‘44 ey
)

. PALCAS

RZNE A BLS
_ — @Poﬁ 5
]
Ub poi5 /|

ORAWN .‘Y 3
QIIMJM.LH]
CHKD
ENGR:

APPR .

SPECIFIER

0c-11-14
1ltfl.?la‘.\

TOLERANCES ON
OECIMALS

X lt
MATERIAL .

/

FiNISH

0fr-23-§€

l_(_ Za-n (2N

USED ON

A2000

NEXY ASSY

SCHEMATIC
AMIGA 2000

SIZE

c| 380710

SCALE NONE |sHeeT Z or ‘ |

PO -15

- BHS

TICK |
VSy

CPU

DIR 5P\ ¢

DIRB

L

>

SIDEB

Vo KEY BOARD S i A o O3V
o / | J3 r] | RAZ6
22 3K3 [+ | ' N I
| v L Ll r 4x 343
K Q —2 +5 bROY T 3] 5[
. KCLK P O . T z P‘;’
| S
2 2
? + Tﬁ KDAT ~—
| Ch{-&a:icu mﬁL - S z
A3 3 Y c
2‘0.00/,1 '? 6
o Sy ﬁsmm) L
~ +5Yo- 29 {Vee 40 "
. _L-_—'—muo ¢ 3
S
l - 8520 oC |18 DRDY
Jo Pe LS32 | = [2¢4 ACK
AlZ, ‘ 23| 7a Ar Pa
r’—@ “ i '
38 12 2
[2
37 R, 3 |13 3
36 ¢4 R 4
35 1§ 5
R3 Uﬁlo '2 16 6 |
B pafl? P? -
;3 DB o PA D ; |z > ove
l 4 _—
3 |, 2 [) 33 > LD CHNG
0| | 4 3 |5) . WPRO
2 | . 4 |6 . . TKS
2 | . | s g RDY
g: ! 6 - g sl<F] FIRA
08 % PA1?r Iy 4§17] FIRI
F INDEX

SFIp8

SELE o >q

SEL18

SHI 4™\~

SEL28

s
g

S£138

.‘:‘?23 “ &o
% 7409

A
T T] _
UIY % Juspy [. B
| M 1489
| DSR 30@4
| ?rﬂ U1
co NC 1489
m R1S 4 12143
DTR - U17
| : M 1483
k——i(d‘: '
o N
| 2 3 1488
. .
- V : ¢ [v88
’ C267 u: v18
== .00/, - |

REVISIONS

Imms o+5v PARALLEL LTRA{ZO'*E DESCRIPTION {DATE [mnovzo
-f--]- - - -]-- | | 1-
;’ U rf . RN6 - - B SEE SHEET | L
' 'l : Ax 343 ' -_ | | | | INUSE .1 3 o |
ooy T 3F -] - | |BRDY - o | DISK
B T . DISK 1 35
Z IEE s el ol e o
T U O 1 N1, 51 IK sos 97 L efEgE
__ 6lpe L L9l Y| INUSE_1
8 |76 R INDEX 2|{NDEY INDEX -
! v Ir7 W INDEX DIR8 3 1bIrB | _8IDIRB
0 JACK : — STEPB 18 |STEPB 20{STEPB
Busy 11 [0 |ausy t‘(TKE DRWDE 17 |6KWDB 22| DKWDH
pour | | | 1T 2T OXWeB 16 IDRWEB | 2+|DKWEB
PRI IS ﬁ‘*"“ 7] peo __ WPR _ elfpRo | 28/WPRO
(25 __f’ﬂ_L dﬂ_ \.)-o ‘E&E'# "’i'T r o DY OKRD 2 |0kRD ul r___la_’ig_q
2 II-I—I—I—UI T - o~ S1DEB 13 |STDEB — 32| SIDEB
| iell DKWDB 7 > AoY I{Rpy < 34 RDY
2/ c(g | m___& MTRXD Ej 1 Ty
22 DKWEB [T> g NC 2 o|SEIIT (|| w2
2 & YT T8 SEL 28 1| 5EciF ™ 3
- DKRD KEY
- , 25 | DoND | T DRES B loﬁﬁﬁgga ~ DEND
ut 2 84s svo—fr 2,5y @
- 140% s N 1 2|y Q
— NC— +12VO—? —t5Y *
: 7 " RESOUT | tloon |/ zowo | |
1&;; 0.001p az] | [5] j
) ¢
4 } |
_ b DEND l
b 7447 | ~ wose_y (3o
-~ oy B s o SEL 18 - /
iz {2 - 8C337 - =RY.VHER O ' {4
| LILE: . 3 > IMUE.T e n Ve TH4LS 32 INTERNAL L 6
F - %38 r Pt aa> 12 ! DETIA POND
oy vlé | 2|9] 7% — 8¢ ‘
5 ﬂwc@ ‘ 33 SERIAL J6
) ~ +5V. USER O +5V 2x4T0
+HIZV. USER O 200 12 KT€L | 2 +12V
.3l sy I 25y lgry-12v
g wespy MCLK T > | 24 MeLK 9_ a22pm
g ADJ 2 AUDOUT > —=T 41AupouT AUDOUT
T AUDIN <% ¢ v e |AUDIN C2 AUDTN
TAD 7> — 24TxD E 2{TXD
INT RXD T # 2\'«9 SJRXD o~
~pU < Z ‘ ‘ 4 L 0ITNT2 o ~I
| - PsSB [3 > ﬁ t LY RESETE E
+—————+ i psw
——t—— 1 ;i# CTC lA
- ﬂ.k -l 3 4 7{ KT
r + — R & + » — ‘3+D'TR g
Vi J- fGND
ct] M o ol e el < e eal o] o] '
,) ———— —[I g— e el S i w t ’ S“‘ELD
- —a —d4 4 'ne
I 0.00/u KEy f | ” '& |
20y
74 23 15 ¢ NC bl 23
NC ==
- a5 NC 6 I8
~, 2)7F | ? 25
LED (3> 6l 42 F oy

MMLESS OTHERWISE ORAWN BY:

T | B scHEmATIC
o L L] AMIGA 2000

FINISH

y
| _+5‘Vo 9 |
- o 7438
| . 2 oK 71~ K (S “
. 6 2 2 ' Z |
L G 1 U~ d b [N s LH2901 |} LM 290!
= + wr. .. | Vo
220 R/
Loy | ' 10%
0% | 1
| 1 RB1 R79
. | | | 0K IM
— | | | | . _ *— &
| - o | | | +CV | 0.1y
r R - . | | - / [RB3 xE 124
i S K Kk ==
; 1 _ . o 5V _ | usvF , 33
S | | T - o - D w2r-yzs| pfey
u. 7X¢ L
/ S ——
_ 1K
Ruz.;ka_¢
1 1 1 .
14 ' | | | '_ | N [
| | L
osc | purpd — J Uil -
[lo22u] 28 easzsr‘mk B 8 3 ee— 9
: 4 . 4 = 9 ﬁ
= | D e B L)
o N :;“’ Y0 | asg_owo | 17 - |
T A %7455 -
oL I WIHF T
S -k * — R Sy o ¢ FVFX
| o | - - i | 1K 4 6 _[IO
SO - | o | . - g 12 D 5 Qrs'——-'r
T f - - ~ S U3
' ! . . _ . 7 i L Q;__..__ | Y
- A ? RO
— Yk 3 >—'| o - 3 ‘
2 XCLKEN_ &8 >— I
— - ' | L {5 > RAS
L —
+5VF > 1 T -
| — IJ ’ IJ /H /?T
e 0/ 0/ 4/
— [UZZ T | V3| T {vir | T (UZF T
B . : | L .
?_L caB| 2l cui| 2l CZ/c_a_L 2l cad|
| - A2000-3

REVISIONS

LTR |zONE] DESCRIPTION DATE | APPROVED
; LTR 12O s — — _
SEE SHEET /
S —{II> HIT
| %38 |
12 | l y " | |
| ute 42T o sy -
| ' | o | §—! AMP
gy ole L2901 | ' - h#4S 5] Nl 83> 7MP
+ o— . | l : _
. | G3 31 Ugg e | |
;| ' i w—<) TR PHE
| _ | _ | ' _ - |
b = = = | | |
.RN3 ! I S
Ix kK7 . : ' DAC | { g > DAc
‘ 5[| ' * | . |) '
RI4S | C2 /3 /2 745 | - | I o | | - |
k ! +57 Clh I 1 U) ~ 8 !V iMCDAC | _ @ CDAC
| C2 9 | | |
2 33 o |
| o . cé 10 LT :
| @35> RES | - RN
y, Mot ‘ ‘ |
10 _ ‘ . ' ' 28 M
E? {
C2 X -
—
T 17 T
— i 4
I 10 4 |
,__:z%usﬁas J 20*;*“5 C4 A
4 U4 G
I x @ g | 3, . 0 6 LG |
13 r !
—t —
4 - _ J *
. Y F4F Fh Y, ThF T4 [3 > McCLK
10 | 4
j | -' * 7.8 > CCK
S QIS 270 S o G3 . 6
uEs |, T P 6.7 > CGCK@
g O | L——'P R Q \ G . 5 S
a3 } Y | o
| i Cl
_] ¢ &
- — {5 > RAs -
" - CLOCK
g |
A-! | _
db_ | - o | UNLESS OTHERWISE ORAWN BY.
v2s | T T | o - TOLERANCES ON
| | - ' R | | OECIMALS . vy
e o LI/ SCHEMATIC
AMIGA 2000

- | ‘ —- _ =] 38070

+5Y
. '
RAB 2 —— |
| | R RA? 3, By
— o R - » o Pmee— |
RAS | _
CLOCK (¢ >— | | | \ - P | T _: o | - |]
- | - | RAY |7 ' - | DRAC 5| ag N
A1-A23 RAL'S | | | | DR A4 7{ a4 | '
— RA4 ' DRAY —e-JAl
| D | - | DRA3 133
? RA7 Vo o - - - ' " o DRAY 1Al FYA -
‘”";"'F RAG 9% 470 o - o o DRAS 10| A5 l
zi'}—ﬁ RAS | RNB | ' | | | DRAb 131 A6 UBL U35 . U
v RA4 L I | RAT | : |
i o - DRAS o
— 4|+
" [i
a-é- e
1 - hRAE a——z DRAELT T
4 RA7 3 4« DRATA RNG
RAS 5 ——— ¢ DRAS wa
RAS_‘{_F'—“B DRAS 133
RAY “aF—==11 DRACF==
p— gy |12 RA3 4 RA3 JC::h DRA3
, 9 RA2 L RA2 5 ¢ DRAZ{ RN10
{?-3 i:l}; RAY1 ARAT1 ? :l DRAIA %33
] | Rag Ay ==grougr-
, : . , . T —
| | | DRA1 T1A1
DRAQ b A2
CNTRL - | DRA3 12/a3
— | 0f o - - NDRA4 1] a4 |
o 7] o | . DRAT __ 10la5 |]
o | | - - NDRAS 13las ,
- | - | DR:? da7 UL2 | UL3 F US
| o DR |
— ' -
: | *
pa—— —
: | 4x39n,
- | '
R 1'_2_ | 4 1 e — e —— J
l
l |
~ A S 1
RAS [>—H4|5 | :
v L ~ ' |
. | b
| - |
— —0. E—
| L ' -

REVISIONS

LTR [zONE] DESCRIPTION [oare [apPrROVED
“ SEE SHEET / {
DRAO S|ag - ' o | o . - i -_- \" +5 o - .
DR A1 7 - m : | o -) o | o
DRAL 47 u37 | o e -
DRAI 12lp3 S \ S 6x0.22p _ _
DRAY il FYA - - - | o
DRAS 1 | - | -
ORAS 3?3 U34 | U3s | U36 |BxDRAM u38 | U39 | U4L0 UL s ﬂgc-zss—cm
DRAT NAT | o | | o " | o 7'
DRA® __ 1Ia8 256 K x 1 | | -
— |- 4 RAS
— 191CAS
- g * . _
l | | i | 1 J
%) 2 w2 My 12 % 2 14 e 2] A4 2
. DO D1 D? D3 D& D% D6 D7
_RAQ 5 AP T T T R [7 T
; D:A‘l T1A1 - 5
DRAQ 6 - p
DRA> 12lx3 U4S vee Lﬂ.g.
ORAT 5 N o . o
__1lAb |
DRA 2 A7 U[.,z U[o3 lJ[’!’ | 8 X DRAM ULG U47 ULB Ul.g .VSS e CI{ R
DRAC 1 A8 o 256 Ko | | - .,
. *{RAS | 8x0.22p
_ 15 c-':—'g |
F——'— | __3 _é- . +
o D0 DI ,'L DO Ol | DO DI DO Dl DO 01 | DO DI [DO DI DO DIT
"] 2 W 2 w2t 2 | 2 w2 1] 2 AR
D8 D9 7010 D11 D19 D1 D14 D15

MNALESS OTHEBWISE
SPECIFIED

TOLERANCES ON

OCCiIMALS

XX

ORAWN BY:

CHKD:

AMIEA 2000

slézl 3

DMAL

CNTRL |

CLOCK |

RI3) |K +5V

5 - IR 4“4 R 22 3

| | . I | o 25 2 | o ;
BwW 1 24 kaat/ S

— . ARW {1} - R - AETHE

T TR) S | (. ' N A

| DBR <_2 | . a1l 8361 I o - fls- | PAC 3> USZ ale __ m

ele
I |*
~—

y‘{NI

41 | : ._ o . '. . | | ‘ .
48 S | - - | RGAE

g —
? 1] C prag L2 .
6 3 T — 3 DU53 ol12_RA?
—_ 5 4 L, —) 0[5 RAS
L4 5 33 1, LI 1e___RA
3 6 J2 T .\._._.____.'.‘.’.. | 19 RA~
2 ? 31] T 3 ~ I RAJ
s 1 . B‘W 39 ~? ‘i:f o . 5 RA
\ ho ; 2 * % 5 S ERTT
RA® . — N R 2 Q
D 25 | | o} Ny DAC 1" ¥ ~ |
, 26 ____ DAc 'Tb—e |
| Dg-D15<z25.38 | N

~ A2000-5

REVISIONS

DESCRIPTION

SEE SHEET | '

Al?

All

RI3) [IK +5V

/

h] F#4

S

Us2

@

Q

A1-A23 :

—_ U PULLUP

¢
- | RGAE -
] |
— 13 DU53 oll2 RAZ
\ I+ /5 RA¢
13 |16 RA
3 119__RA«
_ rF 3 : 1 4 RA 3
4{ m 15 RA2
i . | N
— [
11 8 -2 O
— "
? DAt 1[5 ,
5 > RA®-RAD

ORAWN BY.

SPECIFIED
TOLERANCES ON CHKD.
OECIMALS

R XX JXX

SCHEMATIC .,

L ; AMIGA 2000

MATERIAL

SIZE

C L 380 #/0

SCALE NONE

CMIRL g

- MHCE
FIRI< 6.3}

- 74 38

CCK

CCKQ[&« >—

MV 8

MOV

9 o | N + 12y . ;925'(2
X O
CU5 o 2 (3 DKWEB - - —-Iﬁ' — LED
p 10 | | r | L |
1 | | | 19 .
C144 | | | | y 560 2 -
¢ | U18 ~{R95] r 2
10 A
4?/!6\(LED {3 -
27 | C159 | o0l p
— " |
RES e Q7 /o 1488 3
: 2
. | - N
RGA 8 | u18 —
+5V J— | 7’_* |
. e —<3_1 DKR S EEZA
6 39 If 7 | T
DKVE . . N - o
3 purp 22 - - 12V L ’
12 10
RGal 14D
RXD |+ —
- +5V c&#o |
IPLP I p o
360 '/z, 1483
.15k ¢ R137 9 2~ \US6 Con
IPLI ERET I% |« B USK | N\l ¢
~ AUDA ——2, 250 3.3K 33K 36K 36K 2 “
IPL2 1 ——{R8Y RAGO r——y—@T_—’ R87 +—¢—{ R3O0] ‘/LF.%'J 22
’ t LF 347 €90 | 89 CHEI - -F
PAULA wz 34 0047 001,. 001,, = 000474 —2_2.0"-\, o—{R7a T4
DIS - b
14 3
13
l“2 Col
10 AUDB 33K 3.3K 36K 36K '
3 . R77 Lkial ’I [l 221 [
(y2 q.) 817 [
7 QO‘??F CG‘;¢ 0.0lu 0.0l ?-'-::'-' 0.0047u P?OP TelF 3?7
b 5 R 5. Wy Tgi
5 _ - - _J
. |
3 UDD FIRD 0 +5V
; PoX 1T,] |
M Loy T : SA2FN
Do - 41470 | I t RN 11
Vg 1T 1 "
omAL 22> pmaL A L ’“F‘ 1 1 —
INI3 N ,] | —
RN2S 4«39 MIV s E’iiﬁJY /A 12 —
4INTZ Pay 132 :r‘“‘;?. PBX Min
WE ppy |33 ' ' 1Y |
| o1 x 35 o | il‘:}“ PIX
36 ' rs pLY
28 c'cn PIY PO - y .TL
ervo AGND el czd cis| ¥* 00874
k 3k 4 T—H
'V‘
cooon > |
C11!. cqeq ¢ (05 |) CroR C109C1 FI‘
L SV_USel oo 4oy
q.,-;;,;lz:;a

A2000-6

REVISIONS

LTR |ZONE DESCRIPTION DATE | APPROVED
SEE SHEET / B
., L2K o | |
RI6
LED
- J16
| | y 560 2)
8 R99 jﬁ 2
C159 1 .001
|
<_3] AUDIN
—{_3 > Aupourt
—{8_> L._AUD-I
2NU56 - (63 1K o -
36K 3-/' +——F— R @L
T—’—{E:a Vo LF 7| 22u/16Y 22u[16Y | o JI5
T = |
00047 -—220P | | Q —-!-O,!P
s, | v Y °—1':*o_i;_—}_‘ 60
v
| | ——————{"8 > R_AUD.|
36 K {F Re U@"‘
MB—'II | V1 22u/16Y 22u/16Y , 8 ' F Ji4
¢ | Y LF | .
0.0047p ; 2??9) Ch/ Rj?;'? | Q =0.lp
3/, 51, - oK | - l}ﬁa B
, v
— +5V .
""" ' - §a27K)12
¢ RN11) LEFT (@)
T AT ST 7. :
4 _IFORWARD| DB 9
44 FIRE - o S |
} 4 r+ii B __.__.__fggscvx MALE | - R |
+ | | :
1. 11 2L LEFT | 22 | 2 .
[ngf,‘; -5Y o—{R8s }—e—o9D -V va—{_a_g"zT_ l_—(>+v
81 | (36 | - | cbal(_?? +
21 PoTX = == *"igy | , l'?'f‘/uv
— 2 PoTY ol T T+ o Olp o
J11 RIGHT ¢ * | .
Forwag] 1EHT €19 _ |
DB3
| T 7 Y | mAce
—+ e 24 LEFT |
L— 2] pGND
! | + 1 RiGHT
MNLESS OTHERWISK DRAWN BY:
SPECIFIED
_ | ! g POTX ToLERANCES ON cHKD - 1 |
—— + - s pOTY . ENGR. w
g L2l Tl FIRe - 1 SCHEMATIC 4,
, ﬁf TR | o Lo, AHIGA 2000
NG 5V usae‘* 0.0l SIZE
" | 1s¢;léfs'§ C 380 £/0

SHEEY P or &l

SCALE /ONE

IR
-_w‘ b

9915

(CH
114

09 §¢

0N

0.0 —21

39 8362
{1 -
39 vy
AMIH
8l uy
U76
10) 888
N 687
12 | pons
ﬂ R6R5
a
¢5j;l'rﬂ3
Al = |/8
[7) a1 57 15 7
| é; 3 . 3 843
W G? 30 .uf, N ¥ . 843
431 p, W 6162 1 |
Ld P O hot
£2lor -
61 09
it
/*97
D6
_3705
7 L4
= gg] BR3
P A3 |22 ———————ik £h2
7 22 B3R
Y, A2 s .
£/ .g/ i A IR/
RV 28 . A
36 83 127 = 853
lcek 87 %" - 57
22 7mp 3/ |52 4} ,
5 | — 22
=’ 284
i §
— —
b o7
/4 13 I\iﬁ/z
I/

A2000-7

Y o >

0138 Ri3S ¢
01 T usp

}

DX—’ = /000 /2
BAZ ""%‘zaoa ¥
T TR
L7y
mﬁ
1“5YO——’-—‘5—‘
) CI”_—.‘: ”“[
N/ J
863 (77 loeo | - 4
862 @yoa L o
8¢/ @bﬂo |'4
860 E&uo l"._’
Al ‘l
- 287
| ‘;J
157 O—¢ ——
w9
c35 | m[
.0l
anbe
853. E@UO i7. Py
BA/ @!ﬂlﬂ l"‘
A e }0%0 17 o
H‘IJ
287%
L
i
+SV J
R131
J 30

~ - |

I.X3
8453
562
_ 8¢l
Bed
. 3 D
w BR3
is—
R B3R
- JRI
T A" =
o 853
_ 1 852
i 88/
.1.74
Y7
_‘ Y 7407
& _ 13
E 7 13 r\d\iz

LTRJIZONE}
R_AUD. 1
L.AUD. 7 >

REVISIONS

DESCRIPTIOI_Q

1?04\7: {Awnovto

2 AUO. L
3L AUL.L
9,/12,13,/7,29,2,2% 32 loND

1 S NC. 3oy J8

a'm e
\‘ .

l
I

MODULATOR

ZHXCLKEH
{01
25405
27HDG
271p R

i SR VY LY S N \A

L™ 9

(¥ N Hk LV °%

c13g | R3S
—_— "
2
0l 5y Q6
2SC 3504
K3 ——1/000 17,
PAZ ooy U B
’ ”010 ‘4_.. ' ._ A .
BRI 7] 8060 | .. - |
R81TY Ki7 S
287 /50 ST
+5Y O—¢ _ |
Ci139 Asl | |
=gfm /
.0/ 2d5
N /
B63 F 000 | 2503504
B&2 migaa)/ | J
86/ r—?a—llbdZU |
860 . @8060 N
Al) R-.
283 | 1'L uso
2 S
e ke
t57 o—e p
69
C/35=__ 150 ‘Z
.0l Q7
B%; :‘B/oo;- % 2SC 3504
7 =—2000_I. '
82’ w2 |
Bro *—f‘z——}laso YA
ﬁéa[KT}
8% | |17 lso[]
2 Z
+SY
R 131
v3C

RGB- MALE

+5V_USER
+2V_USER O—t-

=5y O

D8 23 MALE

MNLESS OTHERWISE
APECIFIED

TOLERANCES ON
DECIMALS

R XX

s

MATERIAL

£°S

L xxx L

SCHEMATIC
AMIGA 2000

| 380 710

SHEET 8§ oOF Y1

SIZE

FINISH / C

SCALE NONEF

"

*» | .SLAVE.S' < /o

= 4 |4
SLAVEz <19 _ o - : : T '
T Staves L . | | S (rlf T 1
f Bar9-23 < _1J_| - |
L AMA23L 6> | S o 9lenw) sl gleded 9)éq ¢
o f TN Ve [heeTERE TREE Tk
_ S A ' P sk SR RIS [eR
| | | N4, 4 Use 2 BA1 BA1 29| 'B " 2 3
- N | . N | - NAL_T /3 _BA2 o BA2_ 27
R - - INA3 6. RITN-ZE B AN Y ERY
’_ 29 A{ Ay 51, § 5 _BAY4 - DAY 24
| 27 A2 AS 4 . vy e [6 BAS o BAS 21]
119 |zeas N6 K R (VLT \24e__23
2 pi/] A7 2], . |l8 BA7 Rz o
/3 2] A5 N, NC - -
23 A6 /] .C Abf Pltb | | PA9 21 |
; 8 47 K D \2g4 2)
f 30 A8 _ | Al Jo] | |
32_A9/\\AB 94 US9 4]U maﬂ . a2 38 o
3¢ AI%A? g, . l|z_24s o 43 24
- %) 36 4///\/110 78 I I gAm aj//jr % .
38 a2/\NAn_&]. LT | BA]
5; '_ 39 A/JQA/Z Fj o EEL j# g | | -
> b1 _Al4/INAB3 #]. L |6 _BAJ o / |
Ao W3 a5 N4 3| = |17 BAl % a8 52| J2C 1J21 |J22)23
o [aeN\4E 2|, T glEEas| A3 % R '
/J 47 417/ Lo am - 8A20 54} |
4 | 52 A/J/ /9_1_ 71 ' . | S DALY 5£L
{2 N (77 lm/ | _ o 3422 57
5 6 a0/ [\A6_ 9|, U60 g |/ BAIE | BA23 5;
6 58 A NA4/7_8] . /2 BAI7 -5y O
8 57 A2/ \NAIB_ 7). . . |3 846 /] Ay o—19]
52 A/ A2 61 = |4 BASS | REJERVED
| /0 % - N\4zZe 5], ‘; s 8420 /] By Ty xz ERYED.
B — 2. (N4 41 L e BA21 /| dt’/ 77 '
' | 9] O N\A4zz 3] 2 | |17 3422 N 7307 15|
284 &> { O | A2 2y 3l|eeazz/ [Es_ér]
| mm s Z) T LZE s - | / 804+ &3]
—_— | 2 |u Ne A | :/505 Eo]
1 | INTE 22 O - Do 8%
! O |75 rog ogd 9 A U61 Bbf 30d - 207 42
) 7 Pt Pl 8], | ,F/z BD1 o |/ Bos __&C
79 p2NVP02 7] v 13] 802 - Vso9 78
:Z) ol 3N ro3_6| & 51 303 M/ o120 7% | -
S B auN/s 5t Y Bos N VBow 1y o |
f 86 rPos N\ P05 4 P 805% - YR 691 |
gv TRNATE] B 30s | &m &7 |
— 2 N/ P07 [307 I A
N BOIS 6j|:| 'i'g N R 33';
o | 37-37] N g AN is ig;g !t\':\.
' 2 R BN N ERYR PN
80 rpp | Ppo 323 N N I
— 78_rp9\/ P09 309 I |8k [IS€]IS
i = 76 PD10\]/ PDi0 3010 77t Iz o [z] e
* T1_Po1f N/ poti 30//
69 _Pp1i2\]/ PD12 3012
67 PpI3N\}/ P03 30/3
' 65 1014\ Por14 1 80/¢
‘ 63 vaw BO15
v <7 . | % A4
r,zs T e — T 7T
—. lo.rroc (70>

 Maour (70> . — — s
o | ' A2000-8

REVISIONS

B o o | LTR NE - DESCHIPTION |
| 1 _ i i | 1 - A . |20 4 t }Dnsimnow:o

o 179 / 5
] s

F =)
is' ﬂ JF - A1y

J21 J22 [J23

I~

SN

NINIK
' N~

i A 1R 77> cnraL
il 755.) | { < /10 DoE
RES ; ir——H e <4] RF3
RESERVED |97 __ o/, -
RETERVED {28 o/ | |
IZZLaWG 5 [y—le 1 T ~75 > L[0CAL. OWN
XRpy Y 5 y—A¢ e ~{"Z > (NTRL
g |9 | ,l RESB |
CONB I sl CDACB | -
: L # A—| 37
Cs8 |+ 5|y €32
4 — N\ . RNi3 - | U33
Ly fb., 10K _ , Y |
EINTY * 3] {376 > RESB
| EINTE |42 _ === | Z —2 —e o
146 - - 4 %F32 |
. _ ‘gg ué66 L |
O L b e i = I '
OISE 1S |SE SR B
- néﬁg Egké VEFS EENE .MVEZL—4)-AN,
uQ TN l'hJM. J“*‘k R”} 37
< IR @ 153 S(S W
ua \'L9 IJEB\, iﬁ&)\) LI hiL | -
% R RRG R A - RN28|
: Ne. | - , -~
4772 £ 71 I 3.0

ORAWN BY: SATE
v T | 05-28-4

TOLERANCES ONMN
OECIMALS

XX

SCHEMATIC |, oo

. | . x N - | | V USED ON AM'GAZOOO _
T o T T T e 580710

C
SCALE NONE

g > 270

_‘9__> dBOE

—ip 131 PROC NYC (.‘a wse)
T‘ |

2000uis ML /1n wse)

AZ2000-9

34

0.£J,/a

€278 4
L9 > DoE

L Z > DMA OUT

3 EINTS 1
— '1 s U4 4,}8 ”"29
— 5 AL P L
EINT1 =
2 ’ EINTA 4., agl 3 1PLg
- ©0
5 EINT § EINT2 n I2 3
V
>
in m EINT b 3 I6 | o
10 EINTT} 4
ne — 11
| l Gg.i‘i NC
sy >l 1P - ESHE Ve
L &
EWNT AR [§ > T
| o - | | ewrid, — 135y |
Grrd 9|
EIMT Y l‘ | +SY
EIW-S"? ' Ryl? _
INT 6 Y OX ¢K? CRANI3 | g &y
IZEN l Sx 1ok | :
— I I
| ¢ 4NN { l
_ Y $— 4+ d -4 -
SCAvE A T)—.—f—b—?—-“-——J-I
StAve 2 3 > J*.__L__J’I-
LAy 1> I el |
Stares [> — 5‘1' ols
CNTRL T > AL _¢lr l |
CPU T3 BERR 1|7
kewd [T > Az Z/0
s [T > St
| Lo
eSS [T> Ir @
| | — g
/_JAQ 40_‘[O
BA AA T —~
V 3/424 Ai I
? B4 19 4£+ T St- ' -
BA 15-23 I)——/ -
| I 2/2 P4 2§ - LlocqL _owN T > 14 I | P
1 13 A eand _ 1 B 1 1’
- R | R D 19| 1 | 4
| 2 5 Q ~ 1§ Asoe ayeDd |
B [T > ¢ D v 9 —? Wio | [
| (d 3 ~ 16 A4 o g
- CLoCK — Q& i f —~
o= F . ——
| | | S —_— <) | JE)
‘ o 5 4 P HCT32
e ’ RV I3 | iow (63
o + SV
o | o L O +5Vv
dws [T > T\ 11 Ds
- | 4 WFPS

(2 > ™

Il B

S LSRR I
PaL 10L8

|
r |
Y U; A5
T .
7 ol<<d

24P20C ¢ (in use)

20 (ouis NC {in wse)

) (<
&I / 022
19| 7 . A C278
4
1 ‘ %?QHCTJ-Z
10K Lé?
+ SV
F

DoE
PMA OUT

REVISIONS

LTR }zoruel

DESCRIPTION TDATE } APP

| AA 418
c327 SoLDFR JUMPER
o 3 —Kb5a A J35
G R
T E W/l C27fv‘___é:C,27) L08R _142 M-C‘é
2V K 05 R0 * Apar RiTt -
AoK 02 | Tl S| PAT
Aus -
RI68 Ko AA 113 T
Be 337 l b8 | .
AL
343
Ri6s B
- T |
CLKRD R IS0
e csq14s +5V
Uob5
9
Vss
q
N
$
N
O
S~
A'Y
l Q | A0.. 4#p
A&Ab - | C276 E
L . _ } .X " 2 1,3__ ,,
o KR gse2 '
. N2¥%2h |
o 71--(”1 izl
s T L ¢
Dy-45 | cs 1l B

UNLESS OTHERWISE
| SPECIFIED

TOLERANCES ON-

OECIMALS

MATERIAL:

USED ON

A2000

SHEET Afo OF A4

SCALE A/INE

1 w 729 -732
| o o ‘ o o | 213IFVN5

1 - | 0.2 B7
€163 |
Yl PINS Al-A31. 82, B+.B6, 88, BII-828

AND B30 OF CONNECTORS 7/7 - 720
T ARE CONNECTED.

= J2Y o—

s ' el f ~
r - R (MO FURTHER CONNECTION TO I('S)

+5LUSIR L -

| - - - | +tSV | o | o - | 3
SPARE. | l'lI | - | o | o | o | | - | -5Y *LL | —

TIeKEE

- LAY | - - - | WIRE JumPER
F4LSPY R A o no T

L., B B

Sn

P L

'A2000-10

Ty T ——

S REVISIONS

LTR |ZONE DESCRIPTION DATE | APPROYED

+ _ 4— 4

. | o - " o | | SEE SHEET /

F , = #25-3728
SR PR - 2<i8PH8

Blé

+5Y O—¢—

PINS Al-Al8,BI-BIS
AND BI? OF CONNECTORS
_ - _ - B 721- 724 ARE CONNECTED.
- I N _ o - (N0 FURTHER CONNECTION
o o ' T0IC'S) -

72
45y
+5Y

RERZATE
. L ¢r33 ¢cr63 cr69
-+ 5y T C20-207, C2//, CLy-23%
‘ [l Ci51-26¢

o . ~ GND * v |
. | | GND LE MY 0.22n X l.‘,.’ (0n I

+Jag Tt Jo Jss +oe [ceo Tewo Teree 1¢8 2% inuoos
{50 Key | unz. +12Y. USER
J — ¢ L 1 s & + 12V

| . . 12y T — | . [- KP2 E-mv_usm _-
: | | - 12V _ ——¢ 1+ ~ 12y

stus il 0 U G- > +5VUSER

> + 5V

5y R2 — ¢ — -5
TICKEE — ——— - —F 3 > TICK

WIRE JuMPER
g1

VR

= Zamp | pemas

OECIMALS

X | i1 SCHEMATIC

AMIGA 2000

.qu.a =3

Appendix A

Diagrams

CONTENTS This appendix contains the following figures:
The example backplane (discussed in Section 3.1) A-1
The example PIC (discussed in Section 3.1) A-2
AS500 exterior, featuring the 86-pin expansion connector A-3
Amiga 2000 expansion board layout A-4
Amiga 2000 form factor (including 100-pin connector) A-5
Amiga 2000 video card A-6
86-Pin slot expansion board A-7
A2000/B2000 keyboard connector pinout A-8
Amiga 500/2000 mouse diagram and pinout A-9

Appendix B
Schematics
CONTENTS This appendix contains schematics for each new model Amiga. Note

that these schematics are representative of the engineering design,
but may not reflect the current production board design in all details.

JS

Ju

J3

Je

J1

-

*

N CEIXTITRIC 4y bos =]
v 2N~ PLANZ NP E

~ , e id

> « L] >

o« e = » =% B @8 x » s = 4 FOIT
BNOE BN O D —~ QG —~ N C ™ X = = J O O N e ® 00000 QL AHUOD)
O LQUHONM_EF AN _AOENTO COON—ON—M QI JDFAIND—C OU) O EFZIEFZ LALAUINMNZEXR

et Z e =0 . Lt~ NN 20 vt—di o 2 (L e N 20 Z AN OO TOM IO ARIOLY
AN X O=ralXX. e O (O CELYE. ST (DG L= 3={ i > UL IIITIOE . OO0 OOy OO OO0 "0 9 U or o= o vw

. JA
W s
ad lﬁ
>
x =7
- =2
» 92
=X
S0
= o
=z J
= _ . .
0— o A r~on
> -] _ >
mn.. « T N » B 8 & P x x n q AT XT
S 2"\ W D v v B e O @ = N = » s O T OO — SXELAULIOCG
oo Y9 N DOXIDCOCD - Q O VO =P AN _ADE T CONT—O0N—M OTUN EOTNO—~CON @ 0 ZZTXZZ WA DOONZE
Eﬂ\nrd -t N DU AN E D P E T L T, — vt F e, ot i)t F Eedil= _NIINEN X Dot pulpgetip vt ot T Q) vt AT Y20 NV YE R ALK I
XXX+ +— | + LU IOO—IXT. (T T AN T NI == —CIDX > QWS> TITOOT (I00 OO YN (DOOOOOOOCO0VOa 9T TV O-CQICHT € U0

BARASAALS

o A Y R N A A A e o Y 2 4 o o o N A e o Y e A N A e e s A A A T T 8

E
gz
3t

2] .
= >
< | £ &
! :
i §
. L)
= bt
x F“w
0_ £ o~ . r~oom
o >] » S >>>
4) e = ®* = n B» = x nu e BT
bt To] ® - N Q@ —- N T B M B n - | O O M V. =B o) OO0
ooy W - o U UOUONM_ES AN AKX TO COOVIORr—Mnr— OV SNECOENIO~CON O 0O ZEZZTZZ WAVWHNIZTE
v L NP TUAN TD F Z OO D =, — L~ =0, =0 Z ;= _JNON L) oty = Z (L @ MO0 ZUNI ORI EOWA AN
LR IO XX, (X (L LICLTXTXE TIOEIDE (O X L DT~ CINE > (WU CCIEITTINTIT 00 OO NneiE (3G OO N O 00 U0 O XD - 00

CAL_ONN=

OO0

E'\n LY wm

IR+ +=d)

AARARAALS

o
o
o~ : : DM
> - ™ P
o « = » B B M £ o 5 = e BT
ROE RN WD ® o~ N M e~ (N = m X B - Q Q N U = (> ole o - U sLIOD
N OO - O O UOU—ONM_EF_AN OGO CINNG—GON--<M OIV Crmno—con o O ZIZTEF uAURNNZE

XN X FL AN WO B OO AL T i E vl el A E T~ U R Dey v e o= T BT (DO =0 T AN AN IO ORI AL
+ RN YO XY vl O OCECTX T 00T Y, 80 OF L3OO~ O 2 LW 2D IXRIEOY. OXD0 OO ity T (OMOCEN YW OO WO "0 OO e o0 oo

A Y Y Y o S Y o o o e e o o o o o e o o Y o Y Y N YA Y e A Y Y Y e Y Y e

2CONF [

POLUNF 1G_LN3m

74L 832

14“..

CONFIG_INSs

CONFIG_INtx

hiNY

CONF IG_DUTS)

v

CONF 1G_IN3w

kUQ.

>

CONF IG_OUT3m))

v

2% - s i E
w ml._ —- a N
2 3 3 3
m— a .m [] |] |] |] ..M K‘n | B | | .Imm
Eoandn T B o e R R e SRS 237 s 20oR onmer B BEEEE G RS
(Y Y Y Y Y Yo Yy ey Aoy Y Y oY VY Y oY o Yol o Y Y o of Yy oY e o Y Y Yy N Y e) Yo i Y e o X Y oY Y e Y ey ol Y Yo e Y Y ol oY Yl A Y o o] .
...w... d.\m; m w = . _-_zmn_
» =3 3 =
i 3 m m_
e = 3 2
s .. % 2 °|
8O—SAan— A
: ﬁ S
))))\))) ..m..m-..m W m.
2 £89% § &
L .m o T e ¥38 H@Hﬁ
I.H m..U m “—.b ssshssd Om
0 RS A) 4
..... T il
- 8 T))w\j W A
— YA w| =
2lali 4 AT R
© -
= Lo
=
- Asr 1 3T
-]

o g T4
R LI 0. ~T-* S W

CONFIG_DUT1aYy)—

RN1

J

STEEN

DA

Cle

Cis)

8
H‘ue.n

3 P

AEAROD

SLAVEOUTn
ATEDs=

AN2 psoe,

._

'ﬁ

-l
zs
® - A
NN
L Jas
et
| <
_ a
.,. B n
- 8
2 G
s a
< &
T B
»
]
]
»,
Of =»
.r-mb
=
-
-l
A
@
o o
3 2 3
" - I [~]
o 2 LS
P

#_LUB.E

cos -4
Cis HN»+&

COAC)

5 SLAYEOUTw
) BUS_LOLLISION

s

i
R

iy
il

ND—s

(£

E
v
LA

)

»,
| » -
= + :: + *
1 + 2 S ¢+ +
LUCAL_OkN= »: LOCAL_ONN & LOCAL_OWNe
SLAVESs B> SLAVEU= B> . SLAVESs p> .
1 3a (¢ CONF1G_0UTUx CONFIG_OUTSw
lus<-$>. conr"fc_luﬁs)__. CONFIG_INS
. B : .

a Ca S
!- |] B
? [} []
! é é-
- Ave Rv2

T6m T6m u

SN0 OO0 O
4

—=CZ ANNNT —fTh=T 2 Vo= Voo Voo Domne F oo N TUD FU D= Z o D 2Z UV D€ —ONDE

O IO T IR M)+ DD~ —Tv—0OC) D (0 DD, IXEXIF0CT 1D o= DO W31

P P e Tt VRO TR~ NAD XL ONE
LD =- 00)
e N - @

DA DI D< MO DO~ D—--DDC) DDA DDDDEY D D= TCD—CONNMEY

R R R R R R R IR I IR IR IR RA IR AR KK

393499394939939343895 3583399934939 3034483 4 44999 99999994899 49803 Y 99999 1339997995 197 VY vY v Y,

;
, ;
{u ;51- A vee
g i i
b gﬂ. L;n- i
o i D §;g- AN2
g: eg: Eég: <°
BRA3wm 0 BRUw G%D BBSU %0 AN2.9
BG3s s BGY~N Bl{iu\. BGSs E?ELM - s |
S
l' S= Sm Su - ') i
0 ;: 8§D Eo
1 S g fe
0 e .
§ 5 2 RE,, g .
iy = BFaEl iz
g EEMé : g égnvé g §Env§
I R
oo ju_LNdn | DCONF [5_[Nt
FIG_IN3w kug, CONFIG_IN%a
16_0UTSs); . CONFIG._DUTU®;
0 ANI. O N
D
SLAYEOUTH)
—~3) AEIBw RAN1 RN2 psoeLavzoe:).
. 10K 16K m_p&’gﬁl > BEAAw 1 > OMOUTe
10j2 PASe remer—————3 $00A.0E8
— Loeal Bkiey>——1
. u:.u ‘ | AESAe .
g —

R R R R R R R R R R R IR TR R R R R R AT ERRIIIATARAAAAAAAN

RANS

SLRVE INe

CONF 18 _DUTw))-

DNAIN=

ANS

ANS

vee

-
!
I

1)

- ANS

=

I
220 |

|
S
338
0 |
1 |

TYPa ornan
Lm-Mo !.u.:o;n:s

1
N

Ut6

> 00g

1

~ CDACH Y

TN
uié

AN2
10K

» RSOCLATED=

nNe?

3 233N
f g g

GOUTs

a NOTE1:_RNS_thru_RN18_lnclueive, ere_BOTH pull up_AND_pulldoun.

p NOTE2: _Rl1l_se ignele_are_conmon,Unless_Lthe_signal
] nome_i s_to_the JEFT_of_ltile_respective_J_connector.
O For_axenple_BGRCKN_le_e_comnon_signal_xhi le
O 8Giwm_ie_NOT_a_connmon_signeal. -
(] Exceptione_are_JB _end_J18.

LAST USED

NOT USED

H

J

C21
J10O
AN1G

UlgE

oooooooo

J6, J7
RN2-U,
RAN3-9,-10
HN"‘--’.
us 11,9

ui 11,9 -

Uie 4,5,6:;9,10,8;12,13,11
Uit 4,5,6;9,10,8;12,13,11

-5,

-7,

-10

-8, -9, -10 |

MEVISION WISTOAY

N | op e Voot |w. |

r _
&

—t “+ 1

: ———

COMMODORE-AMIGRA INC.
983 UNIVERSITY AVE. =D
L@3 GATOS. CA 95030

t I: BACKPLANE 'EXAMPLE
' See Section 3-1

Pl ledge lln.ofol

FCO

4

PN I WD = AP D

DO PP D=DPPCYD VDD
N
o

q;ﬂ
®

VPRe

« ey
2 X
» ©
a

BCACKe

xaom
w v O
e o I.

® wvwOoO—-ONDw

gtr‘("lf'- i leolelelolplolal. Jol. laol. lob oleie, . o
=

3

- dCND

oCND
dGNn0
SGND
ESERAYY
ntsrnvu
EAYS
nc EAVE
RESEAY?Y
RESEAVE
RESERVS
14 o)
P1A 1]

CONF 1G_INy

RANZ
18K

qs
2s AN2
> 1 6K
», R23)) 8 yrs2i
TS n?tn Ria 5
‘.. CIRAN IR) “2“919)F, : 3
;cownc_om- | R1? } l3ng
CONFIG_INIe WL SIMN g2y RI6 D)] 1)
B01S D w7 8 _PES_G
;D. >C3e 0014 > H ¥72 ; |
>, 014 |
: 8012)——-—-Ji- 1 . 3
:t: Heie 9011 xg' lie L]l il :g¥§ 138y ~
19> 8010))_l*. " TT 5 o
4 809 “H—Llo e 86 w
a5 8.8)).———-Lh 1 «
7T>—4-9) RS | i’
<o \
g:&
7SS PAE_CONF 1G_OU1 @ UIO_RN]
Yaxidt CONF1G OUla 1Kx18_S1P
ABEGES) - D
< 1 <C a)
NS4S RS
3
o R18
g ’ BRSs H)——
va
NS 1 3, R12
N5 1 30 A13 R13)
Zt: n:zég___q
:)Rl“ R11 ?‘T
Ji!' R1G65% '
32 »ALS RS
aj!' RE
RS> >R1E K2
1= 2 BEAAS R6
LRI RS -
: - R4
:§; R3 vCC
-1 R2 : EP
D, RIS o d .
:I’. | G datluvoou otelse
e 1”9{5”' ~-c°gsLgEEsss ves ga: |20
X) | s b :
B . 12 = -
J’.= nee 0Kkx8_186ne RRAN = | OKx8_186ns RAN =
;25;‘1 t83383:8 | t38883:8
i HE
psS J 8019 i
1> B012
B 7> 801}
LS 8018
< 1 839
s 808
TS
‘,{’,! MATTE PULSEw) |
: . AAN_DRTR_DE
s >one CONF lc.,_our.ié 1 E T
7% | O TuF2ys =} 2 2
w]1 . } ..m
we 2) LJES ST
P — -
T “¥74%r4 - £023
3 + I T
g) ? ‘;J N "
“y -)
A | I \ 1871
> S .
e R | I | 3 AERD .
1> |
>
2
S
1 é
v .
T4 o
- D PAE_LCONF 1G_DUT o
a
v £ n > PAE_CONF 1G_DUT
A lS__MLRYED;))—JL- R , .)
A Sc.}—————m - WATTE PULSEs | o
80ARD icf-;., Y - »» RAM_DATR DEe)
lfﬂﬂ- :r.Ua - <+ °
{)/ L: : 2 . *
ﬂ“n r))———-ﬁ. e W) UU;T(E“ |
az: »)__u,;'.: - y) 8013 > CONF IC_DUTe
RESET =% 2sL 10

> BOARD_S

SHUT_UP_FORN

—3) BOARD_SELs

CONF 1G_INY

j.. , | : - . - | _VC
| ' - U10_RN2 , - | |

! B | - | | ' S |
y.3

RS_DELRYEDe

S L - o ~ PICEXAMPLE
A S A T o See Section 3-1

F 16_DUT

SHUT_UP_FOREVER

‘HM";

TOP OF OPENING

2/0

8.5

F

w »
<ECTION. A-A

L
) !
1
\
| L I .
¥
1 7 \ | ' /33,5
A =) A .
| - A VEr)
| 224
-1 = 1
-] I
J ”
] 1|
|
) /
' :
= 103,75
—_ f
—H < H H , | \
HHHL | | |
adalalllV 1 .. i
CARD EDGE CONNECTOR
§

/. ALL

MNOTES: UNLESS OTHERNIEE

DIMENSIONS A

A-3

SOP QRAPWICS. WL
MEOROER MO 1937 REY

REVISIONS
; ZONE | LTR DESCRIPTION DATE APPROVED
? / PILOT PRODUCTIOAN RELEASE 4-23-487 éﬁi&.‘_
3
)
=+
L}
|
i
i
|
{
1] T
Ph
5 == ‘
' ‘I
]
/1.5
L R D | - - _ , — —1—T¢ OF 86 POS/TION .
' /33.5 | A | /346 | EDGE CONNECTOR T
D(1530)
. ' 5 3
ol 4
-1 ~r
=] ?
' _- -T7 ’
I| : 76 ’
'+] N T* -<>. AS
| -] H Mw» <> UDS
<Y o> - _LDS
| ‘t 1 oot i OR_W
-~ —oiS Ao —<>. OTACK
T A(23:1) O~ \ - bte- <_8%
\ o4l D> —{>_BCACK
| L-i‘—;-—su \ 5t Pe . .D-BR
170.5 N - sp
: HETO Y i, 4
RST— ~— 53 S
VMA P — —a8t 5P
: \ ot o -JE
- , , . 47 Mo ‘ -)_YPA -
J03.75 - | B | o | o | : "'\¥ - dee <_BEER
_FC(2:0) N :', g 3
| N\ ; N> 1PL (2: Q)
: N
: | . E N e |
_— B \‘ -3 3tp
]» _ =2
. il 4
~ ! e
D »
; ! . . _ . : A\ 1 - <. INTE
. 4 - o - - P4 1 | | _INT2ZO- op 0
‘ : . OVRD> o\7 s —L A ROY
F | o | o CDAC T o5 ioe— <3.CCK
s PCE ‘ B ' 13 He -1 CCrQ
i e | D T
- | | | , - e
E ' | o ‘ ' _ _ ¢ _";. \Tr _L -1ty
E ‘ _ : : i vee
- - - : o , © EXPANSION SCHEMATIC
. | MNOTES: UNLESS OTHERW/ISE SPECIFIED - | | | | |
= - " | S). ALL DIMENSIONS ARE MILLIMETERS.,

UNLESS OTHERWISE DRAWN BY: DATE
l SPECIFIED 7, CoLLy 4-24-5; commodore

DECIMAL
P <® ﬁ;‘%ﬂ’&ﬁ’ﬂﬁ‘—w AB00 EXPANS/ION
_ s |s . | COMNECTOR LOCATION
nntnu\/ _ USED ON NEXT ASSY
3 AMigd | SIZE | - REV
? FiNt : | 4500 D 3 /26/5 /
/(| SCALE fuiL |sweeTr / or / |

| mo&ej paeog uoisuedxy (00 esuy

124.25

| s . . ' - _ 33719 max.

— 93.75
6()

165.735

- A4

- 109.855 o S
le—23 4
, P 30 X 2.54 = 762 ————~ k- 17 X 2.54 = 43.18+] -
7T, T ol
| | | | | - | ' : | o - ' '
= L'—“'—'_"’—'—_“"""‘*——*—"——} '\---_—__-- . - , 4J \
et L |
| | H—‘! .
Z |
* A — —— rJ{I["l
—dysk—
le—25.4 —»
re—]7.5—
~— - — — — 363

114.5 max.

156.75

3 _ | | | | _
) §4 = 43 |8+ = |je—m ' 49 X 2.54 = 124.46 = '

I
I

2032 |

COMPONENT SIDE

337.19

114.5

A5

.y |12
10 x 12 MM (3 PL)
© DIA 3.5 \\ . __
N _ _
L P
X, | | | X,) X, - = IR L]] S
t | | h | | | _ D « ,] A
. ~129.26 0.1 . . 47.38 =0I JoL 81.0 0.1 o A L6 — BRI ‘
o . | S 15 —al e | R
PIN100 N PIN2 |PINAIS PINAI PINA3Y E@Z S M
30x2.54 1. 23.495 | | |
76.2 A IR _ 0.5 x 45 BEVEL
17 x 2.54 109.855 | y4A |
| 43.18 | - \ . = ¢] \
| 49 x 2.54 | . 165.735 .
124.46 | |

- Amiga 2000 Form Factor

~ COMPONENT SIDE

47.98 + 0.1 4798 + 0.1

| PIN 1
PIN 18 PIN 18

17 SP. @ 2.54
= 43.18

17 SP. @ 2.54

(18 PIN)
= 43.18 76.835
(18 PIN) | "
Amiga 2000 Video Card

—| T

84.0 Max.
114.5 | Conn. Space
122.12 |
9.0

7.62 o ‘

- 23.495

49.57

~ COMPONENT SIDE

S SE—

MAX

$356.0

44 X}.54 = 111.76

=

42 X 2.54 = 106.68

+ I 111.48 +0.1

A-7

86-Pin Slot Expansion Board

70.0

20.0

- 86-Pin Slot Expansion Board

o ~ Keyboard Connector

I o Pin Name \ - Description '

' | KCLK Keyboard clock
KDAT Keyboard data '
NC | - Not connected
GND Ground | _
+5vV -+ 5 Volts power (100 mA)- -
SHIELD Shield

}
e T Y RN

ASNOTA 0007 /00S ety

f ﬂ | : \J - | o | | - | , HEIGHT 11.5

o
20 R ! jlinn — - ‘oooo ¥ A.E;Su___.__.__._ré# | 4... = 16.34
. _ _ - ouoyu =T - — AR 4 . “
3 ‘ G000 ¢ Wgis P .
g I, S 413 2 .1)

1.9

VIEW Zs=7

109 | o 1200 % 7.8

AS

- : -
13.6, _ 13.6
_ CONNECTION TABLE

“ _ : ~|PIN NO. FUNCTION
L m : 1 Yg
| S \ _ XA
m_;.@.*: Ya
S O _ . Xz

NC

BUTTON #1 (LEFT)

+B 5V

GND

OR[N &~ W

BUTTON #2 (RIGHT) |

<2

g
—

|

Lo
i

J

:

Amiga 500/2000 Mouse

g s e . - T . . Lo s ! : f e L o Cos R B :
ey ol L I 8 R T EEE.M;} o mas TN Y I I Y 2 PR

P

MCE8000
J1u0

D1S
Dly
013
D12
01!
010
08
08
07
06

- DBS

Dy
D3
De
D1
00

A23
R22
A2
R2O
AlY
A18
R17
A16
AlS
ALY
A13
R12
R11
R10
A9
A8
R7
R6
AS
AW
A3
A2
Al

+SYV
. 1K (Px3) I.
T T T T |
- l
. 7K 1592335533
R10U R OO el el o e e A AR
| o~ +5y
e JUFO8
_BOSSL~ | U303) “330
_BGACKC> = R111
_BRCH =
mBG l{ 11 C__BG _.
12 C_BHCK .
_BEERC o
IMHS Ly 1S |CLK
| . E< a.q 20 |E
23 ~_IPLZ
24 J_IPLI
1 25 J_IPLO
a " Nl
26 |FC2
_IPL(D:2) 4 T oo
o 0]
FC (0:2) <R
_DTACKCH o
_VMA<H i
__VPQ || .21 C,__VF"FI
AS<R— =g
R W<t i
7 | uos
_UDS<H g
_Los< T
_RST<H T
‘_-HLT || : 17C_HLT
I__~_:' ? [::'_':.."_"'.d.’I
SSSSSSSeSIRP 101
o5y .___________________‘
i (Px9)
| 4. /K
+5y
0
1 “lcies £ 1 “lcio3 1 “lcioy 1 “lcioes 1 Mo
ulee| —— v1e3| — = |uteu| —— u1es| —— u1es| ——
s 3| J.BUTGF 3 T.0U7uF | 3 J.0U7uF | 3 T.BU7uF | 3 -0
o] 9’[- | EL | &j[

B2000-1

/ /
Sy 15
55 14
S6 13
57 12
58 1
59 108
50 9
61 8
52 1/
63 5/
64 5/
1 4
2 3
3 2 ':‘5 -
Y i 4
5 g N3
\J2
\.11
16
9
8
52 23
51 22
sg 2l §
4yg 280
Y7 13 N\
us 18 \
ys 17
uy 16
43 15
y2 14 N\
4y 13 N6 __
4o 12 N\ NS __
39 11 N
38 18 Q t3
37 5 "\ 2
36 8 \{ N
35 7 N\ N\ _
34 5\
33 5
32 4
30 2 !
29 1 N 6
N 3
' 3
2
l
0}
\

|

MCOB0UU

U100

D15
Olyd
D13
Bie
D11
D1G
DS
08
07
D6
DS
Oy
D3
0e
D1
00

R23
A22
R21
R20
R1Y
A18
A17
A16
R1S
A1Y
Al3
AL2
R11
R10
RS
A8
A7
A6
RS
At
A3
RZ
Al

S4

S5

56

S7

58

S9

60

61

62

63

64

A= Jw o

5¢2

23

51

22

=10

2l

48

2

Y7

19

46

18

4S5

17

4y

—
()]

43

—
wn

42

—
=

41

—
w

U

—
n

39

(S
—

38

—
[x=]

37

o

36

35

34

33

32

31

30

28

i |WwlsEs | | 9]0

D(O:15)

15
14
13
12
11
10

9

8

OO

N

+5V
fo U103
o
s sla7 1 B
s o
\E 6 ga g 1y
N A ps
S i1R2 B8
Q:g 3 1A B [
: 2 R0 BOHE
| THF 245 ~ :U 1 O \4 o
N 13 8C>Lul nglte 15
\1'4 16 7 (s’ D717 14
N3 1536 DBN 13
NE 1215 N E 12
N1 9hy Oup '
\9 sh3 , D37 10
t§9 e D2k g
2 231 D1E
7HLS373
+SY |
a0 U105
@)
s
N7 9 11
N6 8 gg ~ | 5712
\5 71AS B 513
4 s lny By
N3 S A3 B 315
2 4 |q2 B 218
:11 3181 B 1}
0 2 QD B 18
JUF 245 - :U 1 O 6
| 7415373 ‘
N shg ol DBl
\5 1607 © D77
\5 15 6 DG 14
N\ 1215 S|
NE sh e
: 503 D31
.)2 Dei
e 2 1 DIP

+<J_0EB
i< DEL
<] LATCH

—2<>DRD (0:15)

—3>A(1:23)

‘Something in the wWway she mouves..
UNLESS OTHERWISE |DRAWNBY: DATE
SPECIFIED Dave Heyniefys29/87 C OMmMmaOo d ore
4;5 CHKU:
ENGR: 0BH 4/29/87
xl.xxlxxx+ S BEO@O
+ |1+ |+
MATERIAL: USED ON| NEXT ASSY Processor
SIZE REV
AZ0680-CH 312728 w
FINISH: FBD 3 l 2 7 2 =
SCARLE

SHEET | OF 12

- —

A
-4

_CIPL(0:2) <4

_FIRI <-4

+SY

AS00 ?

B2000-2

ReQ0
iy L' y9guF
18v
T A ~ 8
* — (2 Aayg> Ce4Ol
c225 h <38 T USOU
'.0q7UF —
T-Lé — 3 13 lus
7
T : gﬁﬁ- —
42 37
TE S <J_OKRD Cra |
s D28 >_DKWO
s et T>0KNE
481hR09
;_onoe U 2 G G “
TR Ax0D 13 _RxD -
Sinc —>_Tx0 ﬁ
8loR03
;nnoz PRULRA " R2B2
o X_INTS Ay -
_INTap-2 < INT3 -
ERRUIE e LJ_INT2
DRD [@: 15] <>"1 - —— — pre— lgiacna
| | 1 2886A7
- - g;lncns :
~4RGAS -4
3 33"‘“‘“‘ 31 ' A
3%2323 L R23e> 238
1 ——
AGRI _360 _|. 1uF U200y
RIGHT}3® ; |
| 1o
RGA (1:8) A S o 1r2 LFINT
a L3 5 1Pt + —
' T ! 18
_ pox|32 Vref '
rorR3
DMAL<P}— — L2lomAL P1x|28
p1v[28
CI1C>4 281 cx l o ol o .
2108} C211i| C212} Ce13
C3C 23lccxa
|04 GF_[LBY7uF_| . OYTuF_| . BN TuF
_RSTCSdud 1L o meser A_Gnd24
10 -
+SV_USER o
: caed|
ot -_{i:ai _-Teluf
-1 cai18 . B
.—.E]'-l?uF —
. AUDIQ
+5V -
(@
$.7K (Px9) [RIGHT (1)
ap20e | S3555353 ! bBop LN<BO
e - ooy
S . FB20 BACK| 2
JUYLS1S57 +5YV
2 LEFT 3 ®
c 1] al IH: FB20 — ¢ o loswo
- B FB20 o
U2G21_ —%% N POTY FB21C
MlVD—'—._,WW_"__J“—n 2R3 Caus| causl cau7l caus s 7 oorx E
3 . U : FB2!
MIHOA—anL Ly 2B} 108pF |188pF |108pF |18@pF c2sal c2s1| cous
1 AA Ve 9 11 el
MOV AL el 3R - 08pF | 108pF | 188pF
| 12l ¢ 18 = 198pF | 108pF 1 168p
MOH[>— RP20U yY 38 LEFT (0) |
14
15 ‘“‘13 pBoP CN201 =
— 46) FB20 FORWRRD
= * s\ FIRE 21 *12v
FB20 BACK] 2 vsy '
LEFT] 3 ® o
| FB20 ? o [oono R287
__—Ei RIGHT| rory 16
‘ . FB21 -
| cas2| c2s3] ca2su| cass 5 eorx % s -
[168pF | 100pF |108pF | 18@pF — —
| C257| C258| C2S6| L22uF | -
— 108pF |108pF |106pF
- ' L ka1
= T
_FIRO<F - = B
RIOGO $ R20G8
| 10
L PEN<R——@ J200
- | 0
_ -12V

rouns €248l cauf] LEFT AUDIO
- I I — | |
f < Trier U204 | | “TEsoeeF s | | Do CN205S
_ 3 o — -
3 A AVan \ +1|5/°, R243 L JHCK’I
. ; 1 1 2 _ |
t . LF3y47 a0 _1;_242 LF347 cqual = T L. - : I
F* 3900pF . U] 300 B - -
Vil § MPF 162 | 02088 4 J1uF [Reud
o ~ AUDLO
L REOL&QNJK U2E]4 p—
| A~ FLTLEFT
I~ RUDOUT
I—~> RAWLEFT
R292
10K 1< AUDIN
| I~ RAWRIGHT
I—~> FLTRIGHT
_ a8 st RIGHT ARUDIO
9% — — | |
> luF erq H231_58@@F>F2H232 59GF CN2OL1
: ! 1 S — — —
r AT TAY, \ +1|5;'i R233 | Jm‘l
] , & 7 1
b €232 |LF3u7 — 17 - A |
, ' 3900pF 3 C233 c23y 396 =l
] . _ =
MPF102] G201 L F Re3y
- ~ g;';[-g . 1UF - ~ F_Bi@l
— ReasLmaK | Ueou i
. B = B0
+AV
Re2l3
1 . K
- Reiy
1 2 1
2Ngggg/13) 10K G__CUTOFF
ceay R206
Towe NOK
w0 -Rv
\
i FB20
- FB216
J: FBle
| cauel
Tx-oapr-Taapr
4
| +12V +5V +AUD
FB21 o o
i R207> R209>
[FB21 - +AV J |
e = 2% oVref
FBal'j C220 + |
y case| - Leee o
.22ufF = F ~
| Tr il IRt U206y luasae cee2 “ c21§ |+
1960F | 106pF —_ R210 = -4
o - . OU7uF ca2y
S —_ jC221 i E?E? =7 ' - 1-2K—2 . 22uF ’:_'—"'ll. 7uF
= 22 F = 18v -Av o
— = - O
: F208 = -
1@ a0
- ['m pickin’ up good vibretions...
-1%\! BLFIFTT " [beve Hewnislims] LOMMoOdore
| .
_ EOTEs!ﬂLl: : USED ON | NEXT RSSY RUle
[FINTSH: nares B 312726 "5'
SCALE SHEET € OF 12

+5Y 7
1K | .SV ' o ,
nPaezél - J . o)
~ RBOZ2 -

0“\\\\\\\\ IGK' ' RB@; ,qulqe .. |
1 ' y U7K ZS 1K '
LM339 > "
7 / | 2 D802 s RP8O2|-< |
+ R
U80S (813 _

$
D
M

f _ LM339 \ 2
: B L1 - 19
R TIEV A@S ey - : y

) . . : ' > 1

R = i U80S

S;;F%g;& 1&;:;5%8

1K
sl €815
1K | —— |
RPB@Zi Jo1uF

v

Lj CN306

R o _KBCLK[>2 — , — ' _ - R \ - €. 7K v . _ '\

Q302
N3906 i
o ? B @—_
y, 7? - . -
R308 —
mosy L =
p—

. _ - - _ POWER LED
- _INDEXC ' ’ o I o

PBUSY bt R . - - I
PPOUT < o N | | | .

' u3e3 & C3.n
PSELA R e | : % | | l-.

4 Impr i
C314°] C316i - L

clue - J10086F I

o{32 “
15 26 | - | C315___

07 _

14 ? | o - S —_— |
: s L a . . U304 -2 Jioooer | _

12 29 | | - |
I s | J3(] bt - -—_——]

L 3l | |4 . , ' - A
0 3202 %) _
L 23pa pa7jd_=01R 12I Y | -

| |

| | o I B | _
0(0:15) = 35inss3 8 520 pas| D lsi : o o
: 36 , |
33“52 - pruf =13 | —s- ' _
) P -] ‘11| ;5
A(1:23) | rhz ! | }
- 4> _CUTOFF
PR 3 2| I —
—VHALoT * JUCs32 _Cs mlg | - L __n
R_WCH 244 : - | 1488 l
= - 25} | | - - —l12_v
| R IR | , |
_INTE<R 2g roe L oo
: _ 7 _ | | | PBSIS 5 r |L| P
_BHSO> A — — 197 1K - poy i | |] ; :
| | R _ re3f3 . . G)
_BRSTC 34 A ReseT peafld _ .' '
_ : - S pa1 g 1“(0 3
peat.2 X ;
“ s
_STEP<R ‘ | f u: 2 |J,5 e ~
DLR<F | - I ====71 3 e 32 337
o “géggg - - U305 " [1060pF_[1080pF_|1000pF_|1008pF
| - _SELI<F— _ | | . 1l
_SEL2<ZF | | | | = }
R ~ _SEL3<F | - . | 2 =y
—_ | _MTR<R - - -_ ~Jgoe
a | o : - - | 2N3904
o LEDC>— w | | f'- -
e - - | ’ - = 10K 7
o _TxD>% I | R385> L
_RxD<F | 1

— _ - o =
pid ous | : ‘ o | B - - o

- (&j’ ‘ (%f\ i?" : : '
o G

~B2000-3

HELLPLY:

?
0
m
WU
[T
__..i

7 ~0802

: u\mez" G . | | * .
- 1reg |LM33s >— °\ T | | N - | | |
feauF “AGS A _ > KBRST

16V

Lo, o - * ‘ - * L -
S A S = _ , > INT2
:3.07:2.. | = . . - | | o 4 o |
S || sews= INTERNAL SERIAL

T o ? e
POWER LED o ' - P

| N +SV_USER - L<J_BRST
-Sv_USER z o @ | - .
g o © % % Y% % % % % W W | [U70pF - nééz\" <JAUDOUT
| ‘ | o T70oF - ™ mTr-o "9 B |79 |70 0| W0 o W —— “ '
' . : _ -q E]p o Z| v (.n[i OO o
| Addad 4 3839 T
l c3ty’ C316:]_ L = v
— — —_ — § “ g
F - _{1000pF _|1088pfF
2 3
C315 | |
U ~12V (1000pF
iJ-U-"Lq’ T , __l.__ | | - | . | ' ‘ _
” e | N : |
D —— e - EXTERNAL SERIAL

: !
} EMI327
D i | g DB2SP
FG
, T x
E::)FF T>_CUTOFF EMI328 ’) gl% r—
~ R : 1 EMI 2 AxD .3 15. -
=] o | | ATS|
T | M1329 -
F - clev | | Lt EMTH— c1st s e
. | : .o+
. | | | .
- | . o - S | EMI ¢ . c317 +12V_USER _12v_USER | -
-+83 | | | | o | 2oL S ea. oTA 21%t<lF ' T [
- — — . , . EMI33] S EMI332
|t P L EMTL2 co|l 8 ’t LIEN TR .
1 :I: wlg ® : EI: , EMI1333
— ! = L N I T EMI3
4 B 23 EMI
| . ol gt ° 1/
24 v\ 2
| 12
o (O ik SSL?
o O
2 i3 -
I
--=4 309 a1 c3:m2 33 _ | , ——l
1305 " |1000pF |1080pF_|1886pF |1000pF | |
E 3 Z§
— 2 - v ot
\l Q3060 ~ -
3 __ -
: 2N390y | +SV
: B -) " INY148 | - -
iL - R3080 ZS | | | 2 N Z B " N | | 7 A Con't gC?U heor my Cﬁll
= N ~MD300 i ! C301 4304 : €365 ! C80S (though you're many yeors awayl
useiy —— u3es| —_ uses| —— : -
= = | s | [.OU7uF GO i | J.0U7GF 3 .04 7uF WSS OHEISE DTN rnentoer] COMMmoOdore
‘. . L—L" = ~ - - ‘ 'S CHEO
2 ‘ 7 - : T ':{ X ax ‘"'L ENGR: DBM w2l B?Gllllll
APPR
' - + li’ |t b4 Seriol and Reset
"':""_“"’ : : 7 _ , " MRTERIAL: USED ON| NEXT RSSY T3 .
INISH: nasee-ch) N1 [3]. 2726 2
I | SCALE [SHEET 3 OF 12

CNYOO

POWER_CONN
Y. _
+Sv2 e - N | - - ~ - |
+CU00 Cuo! +CU0E2 +C403 +Cuou +CU4B5
+Sy3 3 — ——= — — —— ——
T 01uF T~ T~ T~ T
+5VLL y N—I:L?E]UF - _ N-—LJ:7UF ‘ N_Ll m—Ll?UF m__ll7uF
16V | 1ev. 1 16V 16V
GND1 P _
GND2 [| 16V N 3 s o 1BV , ~
M 7uF cug? +C408 Y09 M uF Cu11 +C412 Cs
GND3 [— — — - _ — Py —
GNDLLS '_+[:‘-106 B O1lufF ol U7uF _.OIUF _.+[:L41E] _ O1uF U7 _ J1
| 16V 16V |
+12VE it
KEY |10 ‘
-12v {4 —
+S_USER JL2 R
-5V 13 ' —
TICK 2 —
+SV
O
v o) : o ® D Q ea) v0)] |
3 C501 ; £502 E C503 ; 50U : "1C505 : "|c506 E £567
Usel| —— Us@2 Uses| —— useu| —— Uses| —— Uso6| use7r| ——
3 _|. 22uF f _|. 22uF 3 _|. 22uF f _|. 22uF F _{. 22uF 3 _|- 22uF f _ 22uFﬁ
'SV
O
2 0) (v @) @© @ @ (¢ 0} @©
E 509 E “lcs10 : CS11 : 512 ; 513 E CS1y : 515
Useg| —— Us10 usii| —— usie| —— Usi3| —— Usty Usis| ——
: T.22uF 3 T 22uF 5 T 22uF : . 22uF 5 J22uF | 3 T.22uF 5 T.22uF
L I il) :
o
O
i “Ics17] "lcsis : “lcs19 é “lcs2e : “lcs2l : “lcs22 : "Ics23
us17| —— US18 Ustg| —— Us2e| —— uset| —— use2| —— use3| ——
3 _|- 22uF F _|. 22uF 3 _|. 22uF 3 |- 22uF 3 _|.22uf 3 _|. 22uF 3 _|. 22uF
2 T E | Sr . 2[C : e[
+SV
O
] “lcses :] lcses i1 lcser : 1 cses : 1 Ticses] Messe [F] cs3i
Usas| —— Uses| —— Use7| — uses| —— useg| —— Us3e| —— Us3l| ——
; |« 22uF 3 _|. e2uf 3 _|. 22uF 3 |« 22uF 3 _|.22uf 3 _|. 22uf 3 _|. 22uF
2 2 &E’]i R < - ‘2]' 8 :~_-§,]L |

B2000-4

) I S S | .5y - +12V_USER -12V_USER +5V_USER
‘ | | | T 0 | : Q Q
‘ — _ f - —— +12v 12V - -5V
- |[+C4BY |+CHOS " | | b -
F ~—1-17UF o _1-17UF
; 16V 16V
F 16V | = |
o JM7eF Cleunr Trcute lewis Jouiy 2§1N4@01 ﬁum
, JFoute TOIF L TRgue LOWF TOLE JJoupe | -[1N4eO!
T>TICK
® o : o8]
i1 "lcsos i] lcse7 [508
USO8 Use7| —— Uses| —— IR
: _|- 2euf 3 _{-22uF : 1. 22uF - S
| o f f _ ES » Fq _% — SS f
o o I B e R . | JuFes8
1 sty £] lesis i1 Clesis S D U303
usiu| —— usis| —— Usie| —_ : - | - 0
3 _|. 22uF 3 {. 22ufF 3 f.22uF | | | - -
: f{ | 9[| o I S , 741532

. | e o | | L | usee
_ | J . R o U107
o . e o [:74Fou

s “lcsee U523 - "lcses 52 “lcsou |
— — usau| = - R
s | Teaof | s | JeauF | i | Je2uF - e [:'J541
_ | r - - S 74F 24y
¥ 1 “cs3a] “lcs3i ¥ | ‘lcsa32 _
Us30 — us3l _ Us3e — | - -
5 T.22uF 5 T.22uF 5 T.22uF | ~ Baby, we were born to run...
« | | ©o | @ - : B - - - NLESS OTHEAWISE |DRAWNBY: | DATE
. | - . : _ SrcLlFIEU Dave Heynleiy,27/87 C O m m O d O r\ e
e . _ o - | | CHKD:
3 - | - o B - o o _‘ | XXX XXX 43 E:gﬂ; 0BH 4/27/87 B 2 E] E] @
. - Coe - I | R Ji ‘i . APPR: -
S o - - - - | MATER[AL: - USED ON| NEXT ASSY ower |
- S1ZE REV
e R2006-CR| 312725 B 3 1 2 7 2 6 >
SCALE ISHEET 4 OF 12

DRDE] 15<>2

DRAB (0: 8)

/ ,
— DRA (0:8) *— \« . - "
g S - 47 (Dx5)
4 O Ne__2lay ry L8 _ L LANY : 470 (Px9)
| | 3 i l 0 2,2TAA L
N\l URJLLF2L4L\%315 Slm:l 2 | ’;%I
3 P4 5
USLLG sl‘/\/\,u slN\Al
| N Blgs volld , _ _ J\/\I ! 3 '|%|
N8y, =z 2 | HPSEJG < At
“-',] s | |
| | —T s ”ml
8 18} l
\4 1710y B %3|
JUF 2u Y 47(Dx3)
C Ne__15)a4 3P CAN :
| N\ 13g2USL‘&G T27 s|‘/v\,-|[;
. |
’ N_t1lg, 5 np— S — "L_J\/U"
) T | | = - RPS501
| | Ne___2gy Yy S8
74F2uy - S
_CASL>= A3 . r3pt8 | | 22 (Dx5)
o CASUC—— Bp Ut L (ol — AN
S — . ‘/\/\'I
 _RASOC® — 8§ nf2 ANVNE
{ : -) o : ' C : sl\/\‘/\;\\'rlu
: | : | | | ' A
S e | | L | a o | RPS08e |
JUF24y |
HECR———| >
- Usul
711F2‘-L'-l\ L
15 5
T Us Ut
JUF2uy
. /§U5Q1 |
| - 31R17!
:3 ggms
| | - SoAlS o |
+SV - - | o - = 35213 o
RSO0 | | 3 233;5 U 5 E] O
4.7k S | | /:f gggée | | o
| Js00 - - P 0 HNGC2UU2
_EXRAM<E | D o s el .
. | | | | - u% 128K x 16 ROM
_ | : -{fs
—_ SRLL
= A3
;na
Al
- f 31a0 E
@M e ~ oE ;
‘ A (1:23) X O CSZZ55553858838858
B I EY P T B R A B s
- ROMENC>Y |
, 0 (0 15) 3 S S LS
+5V
O
: "lcs00 E “lcsuo E “lesy
usea| —— usug| —— usul| ——
" 3 9 . 22uF f |- 04 7uF T‘ 1. B4 7uF

- B2000-5

- N
- DRAB (0: 8)
. - | XX256-15 XX256-15 XX256-15 XX256-15 XX256-15 XX256-15 XX256-15 XX256-15
f) - t§:6 1] ag A8 A8 A8 1| A8 A8 A8 Ag
- o | 2 9ar [4r7 A7 AT S 8aT 5 AT o R ~ HPRT ©
E_ N 13lps o R6E O R6 © A6 © |13l A © A6 © RE O RE O
) 470 (Px9) 5 18] a5 N As W As N as W |_19{ g5 As N As W As W
: L AR 4 iay 2 [Jaw 2 [Jay 2 [Jan @[1a 2 Ay = | fau 2 [Ay 2
____Jy/ 1 2L AN 3 12| A3 A3 R3 A3 12} A3 R3 R3 A3
2 AN 2 6! Q2 A2 A2 A2 6! A2 A2 R2 A2
3 F AN l 7] A1 Al Al Al NP Al Al | Al
4 'lJ\/\A | 8 5] AO RO A ARG 3] AO A AO AB
2 AN
6 2 L ANA { 3] _WE _WE _WE _WE 3] _WE _WE _WE _WE
? ' L ANA 15} _CRS _CRS _CRS _CRS 15! _CRS _CRS _CRS _CAS
8 g AN 4! RAS _RAS _RAS _RAS 4| RAS _RAS _RAS _RAS
_ DI DO DI DO DI 0O DI DO DI DO DI DO DI 00 DI 0O
RPSO3 2 Jid 2 |14 2 |4 2 |[Td 14 14 e |14 e |4
N VL /1 P4 /3 . /5 /5 V2.
| XX256-15 XX256-15 XX256-15 XX256-15 XX256-15 XX256-15 XX256-15 <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>